MECÁNICA ANALÍTICA

Profesor: José Manuel Donoso Dto. Física Aplicada.

Material: Apuntes ETSIA de la asignatura (Prof. Javier Sanz)

Calificación: Examen Final (convocatoria oficial según ordenación)

Dos problemas (10+10) sin libros ni apuntes

Opción de test teórico a mediados de cuatrimestre

MECÁNICA ANALÍTICA 2011-12

Introducción a la Mecánica Lagrangiana.

- Ecuaciones de Lagrange. Antecedentes: Simetrías y Teoremas de Conservación. Principios variacionales..
 - Sistemas holónomos; ecuaciones de Lagrange. Potenciales generalizados; fuerzas.
 Sistemas lagrangianos.
 - Sistemas no holónomos; ecuaciones de Lagrange. Constantes del movimiento. Principios variacionales.

• Introducción a la Mecánica Hamiltoniana:

- Ecuaciones de Hamilton; constantes del movimiento. Transformaciones canónicas.
- Teoría de Hamilton-Jacobi. Sistemas integrables. Variables angulares y de acción.

Sistemas dinámicos:

- Equilibrio de un sistema dinámico. Linealización de un sistema dinámico. Ampliación del concepto de equilibrio; Noción de caos clásico.
- Sistemas dinámicos discretos. Resonancia paramétrica. Oscilaciones anarmónicas de un grado de libertad.

Oscilaciones de N grados de libertad:

- Oscilaciones próximas a la posición de equilibrio;
- Llinealización y modos normales de oscilación. Oscilaciones en torno al movimiento estacionario.

BIBLIOGRAFÍA BÁSICA RECOMENDADA

Arnold, V.I., Mecánica Clásica. Madrid 1983. Paraninfo.

Calkin, M.G, Lagrangian and Hamiltonian Mechanics. 1996. World Scientific.

Goldstein, H., Mecánica Clásica. Barcelona 1994. EDITORIAL REVERTE.

Hand, L. Y Finch J., Analytical Mechanics. CAMBRIDGE UNIVERSITY PRESS, 1998.

Landau, L.D. y Lifshitz, E.M., *Mecánica*. Barcelona 1970. EDITORIAL REVERTE.

En cada tema podrán darse referencias específicas a textos o a artículos científicos relacionados con el temario que sean accesibles desde la web ETSIA-Biblioteca.

Introducción

Mecánica de Newton. Leyes de conservación.

$$ec{F}=mrac{d^2ec{r}}{dt^2}=mec{a}$$
 $ec{F}=0$, entonces,

$$ec{F}=0$$
, entonces

 $ec{p}$ es una constante de movimiento

$$ec{L} = ec{r} imes ec{p} ec{}$$

$$\frac{d\vec{L}}{dt} = \frac{d\vec{r}}{dt} \times \vec{p} + \vec{r} \times \frac{d\vec{p}}{dt} = \vec{r} \times \vec{F} = \vec{N} \ .$$

- · Conservación del momento cinético.
- Conservación de la energía mecánica (fuerzas conservativas) $W_{12} = -\int_1^2 \vec{\nabla} V d\vec{s}$ $T_1 + V_2 = T_2 + V_2$
- · ¿Qué tienen en común?

Formulación variacional de la Mecánica: Principio de Hamilton

Cálculo de variaciones. Principios Variacionales

- •Problema: extensión del proceso de minimizar (maximizar) una función f(x) a minimizar (maximizar) un FUNCIONAL, integral definida sobre x de una función de f(x), df/dx y de x.
- •Del mismo modo que en cálculo ordinario se busca x para que f(x) sea extremo analizando el entorno de x:
- •Una función (continuous and diferenciable) de n variables presenta un extremo en χ_m si para toda variación infinites mal χ_m en torno al punto es nula:

$$z = F(x_1, x_2, ..., x_n)$$
 $x = x_m \equiv x_{1m}, x_{2m}, ..., x_{nm},$

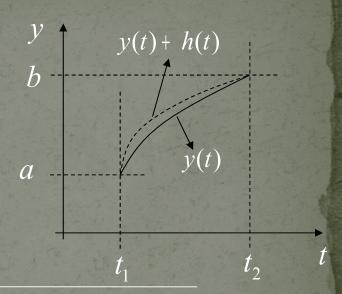
$$\delta z = z - F(x_m) \simeq \sum_{j=1}^n \left(\frac{\partial F}{\partial x_j} \right)_m \delta x_j = 0, \qquad \qquad \left(\frac{\partial F}{\partial x_j} \right)_m = 0, \quad j = 1, ..., n.$$

•Valor estacionario de un funcional

Consideremos la integral definida de la forma:

$$I = \int_{t_1}^{t_2} F(y, \dot{y}, t) dt \quad ,$$

Donde y es función de t e $\dot{y} = \frac{dy}{dt}$.



I tiene valor que depende de la function $\mathcal{Y}^{(t)}$ usada para evaluar la integral, I Se llama funcional de

• Si se busca ahora la función y(t) que cumpla $y(t_1) = a, y(t_2) = b$ y que haga estacionario el funcional I,

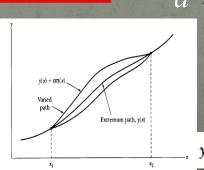
$$\delta I = I(y+h) - I(y) = 0 \rightarrow$$

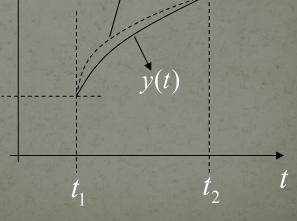
$$\Rightarrow = \int_{t_{1}}^{t_{2}} F(y+h,\dot{y}+\dot{h},t)dt - \int_{t_{1}}^{t_{2}} F(y,\dot{y},t)dt \approx
\approx \int_{t_{1}}^{t_{2}} \left(F' + F_{y}h + F_{\dot{y}}\dot{h} \right) dt - \int_{t_{2}}^{t_{2}} F(y,\dot{y},t)dt = \int_{t_{1}}^{t_{2}} \left(F_{y}h + F_{\dot{y}}\dot{h} \right) dt =
= \int_{t_{1}}^{t_{2}} F_{y}hdt + \int_{t_{1}}^{t_{2}} F_{\dot{y}}dh = \int_{t_{1}}^{t_{2}} F_{y}hdt + F_{\dot{y}}\dot{h} + F_{\dot{y}}\dot{h} - \int_{t_{1}}^{t_{2}} h \frac{dF_{\dot{y}}}{dt} dt =
(h(t_{1}) = h(t_{2}) = 0)$$

$$y \qquad y(t) + h(t) \qquad y$$

$$=-\int_{t_1}^{t_2}\left(\frac{d}{dt}\frac{\partial F}{\partial \dot{y}}-\frac{\partial F}{\partial y}\right)hdt=0,$$

También suele tomarse *h* con variación paramétrica





• Y como h(t) es arbitrario, la integral es cero si (es suficiente y también necesario)

$$\frac{d}{dt}\frac{\partial F}{\partial \dot{y}} - \frac{\partial F}{\partial y} = 0,$$

La función $\mathcal{Y}(t)$ que satisface tal l ecuación se dice extremo del funcional I

• Para n variables la generalización es inmediata:

$$I = \int_{t_1}^{t_2} F(y_1, \dots, y_n, \dot{y}_1, \dots, \dot{y}_n, t) dt \quad , \qquad y_j(t_1) = a_j, \quad y_j(t_2) = b_j, \quad j = 1, \dots, n.$$

$$\delta I = 0, \quad \Leftrightarrow \quad \frac{d}{dt} \frac{\partial F}{\partial \dot{y}_j} - \frac{\partial F}{\partial y_j} = 0, \quad j = 1, \dots, n.$$

Las funciones $y_i(t)$ son los extremos (estacionarios) del funcional I.

- Ejemplo.Encontrar la curva que minimiza la distancia entre dos puntos
- Hallar y(x) tal que la distancia entre los puntos (x_A, y_A) y (x_B, y_B) sea mínima

$$S_{AB} = \int_{A}^{B} ds = \int_{x_{A}}^{x_{B}} \sqrt{1 + y'(x)^{2}} dx, \quad with \quad y(x_{A}) = y_{A}, \quad y(x_{B}) = y_{B},$$

$$F = \sqrt{1 + y'(x)^{2}} \qquad \Rightarrow \qquad \frac{d}{dx} \frac{\partial F}{\partial y'} - \frac{\partial F}{\partial y} = 0,$$

$$\Rightarrow \frac{d}{dx} \left(\frac{y'}{\sqrt{1 + y'^2}} \right) = 0, \quad \Rightarrow \quad \sqrt{1 + y'^2} = \text{cte}, \qquad \Rightarrow \quad y = c_2 + c_1 x,$$

$$\Rightarrow y = y_A - x_A \left(\frac{y_B - y_A}{x_B - x_A} \right) + \left(\frac{y_B - y_A}{x_B - x_A} \right) x$$

El Principio de Hamilton

•Para un sistema mecánico existe una función $L(q,\dot{q},t)$ de las posiciones q y velocidades \dot{q} y del tiempo

llamada lagrangiana, tal que el funcional S, llamado "acción"

$$S = \int_{t_1}^{t_2} L(q_1, ..., q_n, \dot{q}_1, ..., \dot{q}_n, t) dt ,$$

Es tal que sus extremos son las soluciones de las ecuaciones (de Lagrange) :

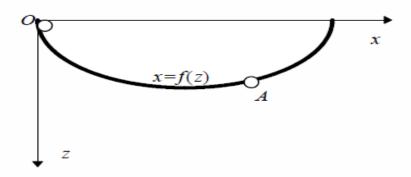
$$\delta S = 0, \quad \Leftrightarrow \quad \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_j} - \frac{\partial L}{\partial q_j} = 0, \quad j = 1, ..., n.$$

¿Cuál es L? ¿es única? ¿pueden obtenerse las ecuaciones de Newton?

Ejm
$$L = \sum_{i} \frac{1}{2} m_i \dot{\vec{r}}_i^2 - U$$
 con $U = \frac{1}{2} \sum_{i,j} V_{ij} (|\vec{r}_i - \vec{r}|_i)$

Problema de la braquistócrona (Problema 15):

Dados dos puntos O y A en un plano vertical, y en presencia de un campo gravitacional vertical, hallar la curva que los une para que una partícula, que la recorra, tarde el mínimo tiempo posible en ir de un punto a otro, partiendo del reposo.



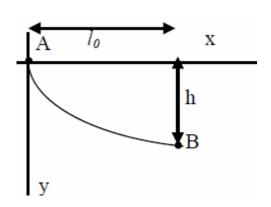
minimizar la integral

$$t = \int_{O}^{A} \frac{\mathrm{d}s}{v}$$

$$t_{AB} = \int_{A}^{B} \frac{ds}{v} = \int_{0}^{x_{B}} \sqrt{\frac{1 + \dot{y}^{2}}{2g y}} dx$$
,

La función integrando no depende explícitamente de x por lo que

$$\dot{y}\frac{\partial}{\partial\dot{y}}\sqrt{\frac{1+\dot{y}^2}{y}}-\sqrt{\frac{1+\dot{y}^2}{y}}=cte\,,\quad \Rightarrow \ \frac{1}{\sqrt{y(1+\dot{y}^2)}}=cte=c\;,$$



introduciendo el parámetro θ $\dot{v} = \cot(\theta/2)$

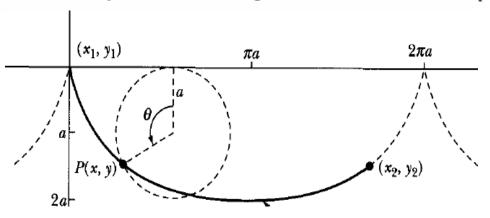
$$y = c_1(1 - \cos(\theta))$$
, $dx = \frac{dy}{\cot(\theta/2)}$ \Rightarrow $x = c_1 \int (1 - \cos(\theta)) d\theta = c_1(\theta - \sin(\theta)) + c_2$,

De la condición y(x = 0) = 0, encontramos $c_2 = 0$. El haz de curvas es pues

$$\begin{cases} y = c_1(1 - \cos(\theta)), \\ x = c_1(\theta - \sin(\theta)). \end{cases}$$

 $\begin{cases} y = c_1(1 - \cos(\theta)), \\ x = c_1(\theta - \sin(\theta)). \end{cases}$ haz de cicloides cuya circunferencia generatriz tiene radio $R = c_1$

$$\begin{cases} \frac{2\pi R}{l_0} = \frac{2\pi}{\theta - \sin \theta} \\ \frac{h}{l_0} = \frac{1 - \cos \theta}{\theta - \sin \theta} \end{cases}$$



El Principio de Hamilton establece que:

De todas las trayectorias posibles (compatibles con posibles ligaduras) un sistema dinámico de desplaza en el tiempo de un estado a otro siguiendo sólo la trayectoria que minimiza la integral temporal de T-U.

$$\delta \int_{t_1}^{t_2} (T - U) dt = 0$$

Ejm. Oscilador armónico y péndulo simple.

$$L = T - U = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}kx^2$$

$$T = \frac{1}{2}I\omega^2 = \frac{1}{2}ml^2\dot{\theta}^2$$

$$U = mgl(1 - \cos\theta)$$

La lagrangiana (aquí sistema conservativo newtoniano) es escalar y formulable en coordenadas GENERALIZADAS

No se usan vectores, no aparecen fuerzas ¡¡

El cálculo de variaciones permite extender las ecuaciones de Euler-Lagrange incluyendo condiciones en las variables, LIGADURAS, y más allá de sistemas conservativos: Tarea del Curso.

Notas sobre la formulación Lagrangiana (frente a la de Newton)

- 1.- No necesitan ser derivadas de principios variacionales, pero hoy es más riguroso (Lagrange 1788, Hamilton 1834, Jacobi (1837) ... Weierstrass, etc
- 2.- No da una teoría nueva, pero sí una formulación nueva ¿por qué usarla? Está asociada a problemas de MINIMOS usuales en Física.
- 3.- Maneja un escalar L, da ecuaciones de movimiento sin pasar por F, no usa idea de fuerza (fuerzas a veces imposibles de determinar si ligaduras en Newton).
- 4.- L es invariante (no cambia en sistemas coordenados), las variables pueden no ser posiciones de espacio físico (ejm. ángulos, energía...)
- 5.-Energía versus Fuerza: en física moderna persiste "energía", como en Cuántica, Hamilton relaciona hoy física clásica y moderna.
- 6.- ¿Viola principio de causalidad? lo lleva a principio más último.
- 7.- Idea ya avanzada en la Antigüedad en óptica -Herón. II AC de distancia mínima) y posteriormente Fermat 1657 (Ley de Snell). En Mecánica "ímpetu mínimo" de Maupertius 1747, luego hasta hoy conectando Newton y teoría de campos.

Extensión de la formulación si hay ligaduras: aplicar Prpio. Variacional condicionado: salen multiplicadores de Lagrange en el método.

Tipos de ligaduras: holónomas, y no holónomas. En general, son de la forma:

$$f(\mathbf{x}_{\alpha,i},\,\dot{\mathbf{x}}_{\alpha,i},\,t)\,=\,0$$

Dar ecuaciones de transformación (directa e inversa) para coordenadas y velocidades generalizadas, y contar con las ligaduras del sistema en tales coordenadas.

$$x_{\alpha,i} = x_{\alpha,i}(q_1, q_2, ..., q_s, t), \begin{cases} \alpha = 1, 2, ..., n \\ i = 1, 2, 3 \end{cases} \qquad q_j = q_j(x_{\alpha,i}, t) \dot{q}_j = \dot{q}_j(x_{\alpha,i}, \dot{x}_{\alpha,i}, t) \dot{q}_j = \dot{q}_j(x_{\alpha,i}, \dot{x}_{\alpha,i}, t) \dot{q}_j = \dot{q}_j(x_{\alpha,i}, \dot{x}_{\alpha,i}, t)$$

Una vez elegidas las coordenadas generalizadas, el estado del sistema se representa por sus valores en todo t, no han de ser "posiciones" necesariamente (ángulos, energía, momentos...).

Ligaduras:

a) Holónomas, son relaciones algebraicas de las coordenadas (y posiblemente con el tiempo) de la forma:

$$\phi_1(\vec{r},t) = 0$$
, $\phi_2(\vec{r},t) = 0$,, $\phi_M(\vec{r},t) = 0$. (31)
Ejemplo: $(\vec{r}_i - \vec{r}_j)^2 - c_{ij}^2 = 0$

(relaciones geométricas dependientes de t)

b) No holónomas, todas las demás : Ambas pueden ser $re\acute{o}nomas$ (dependen de t) o $escler\acute{o}nomas$ (no cambian con t) $r^2 - a^2 > 0$

En general relacionan coordenadas v velocidades (semiholónomas)

$$\sum_{i=1}^{i=3N} A_{ri} \dot{x}^i + A_r = 0$$

A veces pueden ser integrables, son holónomas.

Conviene usar un conjunto de *f*=3*N*-*M* **coordenadas generalizadas**, relacionadas con las cartesianas, por una transformación invertible (Jacobiano no nulo) y para que las ligaduras holónomas se satisfagan de forma automática.

Así el vector de posición (de cada partícula) se puede escribir en función de las $\{q\}$ y de t.

$$\vec{r} = \vec{r}(q, t) \,, \tag{32}$$

con velocidad:

$$\vec{v} = \sum_{\alpha=1}^{f} \dot{q}_{\alpha} \, \vec{a}_{\alpha} + \frac{\partial \vec{r}}{\partial t} \,, \tag{33}$$

donde los vectores $\vec{a}_{\alpha} = \frac{\partial \vec{r}}{\partial q_{\alpha}}$ constituyen una base (Jacobiano de transformación no nulo)

en la que expresar las componentes de la fuerza F, así se tienen coordenadas, velocidades y fuerzas generalizadas. Por ejemplo:

$$Q_{\alpha} = \vec{f} \cdot \vec{a}_{\alpha} :$$

Algunas relaciones importantes:

$$\vec{v}(q,\dot{q},t) = \sum_{\gamma=1}^{f} \dot{q}_{\gamma} \, \vec{a}_{\gamma} + \frac{\partial \vec{r}}{\partial t} \qquad \qquad \frac{\partial \vec{v}}{\partial \dot{q}_{\alpha}} = \vec{a}_{\alpha} = \frac{\partial \vec{r}}{\partial q_{\alpha}} = \frac{\partial \vec{r}}{\partial q_{\alpha}} = \frac{\partial \vec{v}}{\partial q_{\alpha}} = \frac{\partial \vec{v$$

Que permiten deducir las Ecuaciones de Lagrange para "una" partícula (no necesariamente en espacio 3D) a partir de la la Ley de Newton:

$$\vec{f} = m \dot{\vec{v}}$$

La fuerza generalizada $Q_{\alpha} = m\vec{v} \cdot \vec{a}_{\alpha}$ se expresa como:

$$Q_{\alpha} = \vec{f} \cdot \vec{a}_{\alpha} = m \vec{v} \cdot \vec{a}_{\alpha} = \frac{d}{dt} (m \vec{v} \cdot \vec{a}_{\alpha}) - m \vec{v} \cdot \dot{\vec{a}}_{\alpha} = \frac{d}{dt} (m \vec{v} \cdot \frac{\partial \vec{v}}{\partial \dot{q}_{\alpha}}) - m \vec{v} \cdot \frac{\partial \vec{v}}{\partial q_{\alpha}} =$$

$$= \frac{d}{dt} (\frac{\partial}{\partial \dot{q}_{\alpha}} \frac{m}{2} \vec{v} \cdot \vec{v}) - \frac{\partial}{\partial q_{\alpha}} \frac{m}{2} \vec{v} \cdot \vec{v} , \qquad (46)$$

Lo que lleva a

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{\alpha}} \right) - \frac{\partial T}{\partial q_{\alpha}} = Q_{\alpha}$$

- Ecuaciones de Lagrange (de "una partícula") donde las Q cuentan, en principio, con todas las contribuciones de fuerzas naturales o vinculadas a ligaduras.
- Como caso particular, de F deriva de un potencial newtoniano, se tienen las ecuac. de Euler-Lagrange.
- También , la fuerza puede derivar de un potencial generalizado según $\vec{f}^* = -\frac{\partial U(\vec{r}, \vec{v}, t)}{\partial \vec{r}} + \frac{d}{dt} \frac{\partial U(\vec{r}, \vec{v}, t)}{\partial \vec{v}}$
- Lo que lleva a $Q_{\alpha}^* \equiv \vec{f}^* \cdot \vec{a}_{\alpha} = -\frac{\partial U(q, \dot{q}, t)}{\partial q_{\alpha}} + \frac{d}{dt} \frac{\partial U(q, \dot{q}, t)}{\partial \dot{q}_{\alpha}}$. (68)

y si toda fuerza activa se expresa así (sin ligaduras), L=T-U, es la Lagrangiana de la partícula (o sistema), pero U no es potencial newtoniano en general.

Para el caso de un sistema de N partículas, puede seguirse un proceso análogo, en este caso se tienen 3N variables cartesianas. Si el número de ligaduras holónomas es M, se pueden elegir

$$f=3N-M$$

variables generalizadas, es el número de *grados de libertad*, para que tales ligaduras se cumplan automáticamente.

$$\phi_l(\vec{r}_1, \vec{r}_2, ..., \vec{r}_N, t) = \phi_l(\vec{r}, t) = 0$$
, $l = 1, 2, ..., M$

Suponiendo 3N variables **{q}** (de las que M pueden ser constantes de movimiento)

 $q_{\alpha} = q_{\alpha}(\vec{r}_1, \dots, \vec{r}_N, t)$, $\alpha = 1, \dots, 3N$ $\vec{r}_i = \vec{r}_i(q_1, \dots, q_{3N}, t)$, $i = 1, \dots, N$, $\det \left| \frac{\partial q_{\alpha}}{\partial \vec{r}_i} \right| \neq 0$.

Las ecuaciones de Lagrange se obtendrán, como para una partícula, pero ahora *i* va de 1 a N.

$$\begin{split} \sum_{i} (\vec{F}_{i} - \dot{\vec{p}}_{i}) \delta \vec{r}_{i} &= 0 \\ Q_{\alpha} &= \sum_{i} \vec{F}_{i}^{(a)} \frac{\partial \vec{r}_{i}}{\partial q_{\alpha}} \end{split}$$

$$\left\{ \begin{array}{l} \displaystyle \sum_{i} \dot{\vec{p}_{i}} \delta \vec{r_{i}} = \sum_{i} m_{i} \ddot{\vec{r}_{i}} \delta \vec{r_{i}} = \sum_{i,\alpha} m_{i} \ddot{\vec{r}_{i}} \frac{\partial \vec{r_{i}}}{\partial q_{\alpha}} \delta q_{\alpha} \\ \\ \displaystyle \frac{d}{dt} \frac{\partial \vec{r_{i}}}{\partial q_{\alpha}} = \frac{\partial \vec{v_{i}}}{\partial q_{\alpha}} \\ \\ \vec{v_{i}} = \sum_{\beta} \dot{q}_{\beta} \frac{\partial \vec{r_{i}}}{\partial q_{\beta}} + \frac{\partial \vec{r_{i}}}{\partial t} \Rightarrow \frac{\partial \dot{\vec{r}_{i}}}{\partial \dot{q}_{\beta}} = \frac{\partial \vec{r_{i}}}{\partial q_{\beta}} \end{array} \right.$$

$$\sum_{\alpha} \delta q_{\alpha} \left[\left(\frac{d}{dt} \frac{\partial T}{\partial \dot{q}_{\alpha}} - \frac{\partial T}{\partial q_{\alpha}} \right) - Q_{\alpha} \right] = 0$$

Se obtiene:

Donde las fuerzas generalizadas pueden contener tanto las fueras de ligaduras como las activas. Pero las de ligadura holónomas pueden NO aparecer en las ecuaciones.

Un caso particular: si F deriva de un potencial generalizado U(r, v, t) función de las 3N+3N+1 variables de $\{r\},\{v\}$ y t. Para 1D:

$$Q_{\alpha} = \vec{f} \cdot \vec{a}_{\alpha} = -\frac{\partial U(\vec{r}, \vec{v}, t)}{\partial \vec{r}} \cdot \vec{a}_{\alpha} + \left(\frac{d}{dt} \frac{\partial U(\vec{r}, \vec{v}, t)}{\partial \vec{v}}\right) \cdot \vec{a}_{\alpha} = -\frac{\partial U(q, \dot{q}, t)}{\partial q_{\alpha}} + \frac{d}{dt} \frac{\partial U(q, \dot{q}, t)}{\partial \dot{q}_{\alpha}}$$

(demo.). Un caso especial es la fuerza de Lorentz sobre carga en campo electromagnético, se obtiene del potencial U y el lagrangiano: (probarlo pag.10)

$$ec{F} = q \left(ec{E} + ec{v} imes ec{B} \right) , \qquad U = q(\phi - ec{A} ec{v})$$

$$ec{E} = - ec{\nabla} \phi - \frac{\partial ec{A}}{\partial t} , \quad ec{B} = ec{\nabla} imes ec{A} \qquad L = T - U = \frac{1}{2} m v^2 - q \phi + q ec{A} ec{v}$$

IMPORTANTE: L no es única, si se toma como lagrangiana otra L' tal que $L' = L + \frac{dF(q,t)}{dt}$

Se obtienen las mismas ecuaciones de movimiento. (basta ver que el $\frac{d}{dt} \frac{\partial}{\partial \dot{a}_c} \frac{dF}{dt} - \frac{\partial}{\partial a_c} \frac{dF}{dt} = 0$ operador de L sobre tal función es nulo)

Se Observa que las mismas ecuaciones de movimiento de la carga se obtienen con otros potenciales según

$$(\phi \to \phi' - \frac{\partial \varphi}{\partial t}, \quad \vec{A} \to \vec{A}' + \nabla \varphi) \qquad \qquad U \to q(\phi' - \overline{A}' \cdot \overline{v}) - q \frac{d\varphi}{dt}$$

Otro ejemplo es el potencial generalizado centrífugo:

$$\begin{aligned} &(\text{aceleración del origen} = \vec{a}_o'(t)\,, & \text{velocidad angular} = \vec{\Omega}(t)\,) \\ &U = -m\vec{v}\cdot(\vec{\Omega}\wedge\vec{r}) - m\frac{1}{2}(\vec{\Omega}\wedge\vec{r})^2 + m\,\vec{a}_o'\cdot\vec{r} \\ &\frac{\partial U}{\partial \vec{v}} = -m(\vec{\Omega}\wedge\vec{r})\,, \quad \text{y} \quad \frac{\partial U}{\partial \vec{r}} = -m(\vec{v}\wedge\vec{\Omega}) - m(\vec{\Omega}\wedge\vec{r})\wedge\vec{\Omega} + m\,\vec{a}_o'\,, \\ \vec{F}_I = -m\,\vec{a}_o' + m(\vec{v}\wedge\vec{\Omega}) + m(\vec{\Omega}\wedge\vec{r})\wedge\vec{\Omega} + \frac{d}{dt}(-m(\vec{\Omega}\wedge\vec{r})) = \\ &= -m(\vec{a}_o' + \vec{\Omega}\wedge(\vec{\Omega}\wedge\vec{r}) + \frac{d\vec{\Omega}}{dt}\wedge\vec{r} + 2\vec{\Omega}\wedge\vec{v}) \end{aligned}$$

Conviene expresar la energía cinética •T en función de coordenadas y velocidades generalizadas.

$$\vec{v} = \sum_{\alpha=1}^f \dot{q}_\alpha \, \vec{a}_\alpha + \frac{\partial \vec{r}}{\partial t} \, ,$$

$$T = T_0 + T_1 + T_2 \quad , \tag{34}$$

con

$$T_{0} = \frac{1}{2} m \frac{\partial \vec{r}}{\partial t} \cdot \frac{\partial \vec{r}}{\partial t}, \qquad T_{1} = m \sum_{\alpha=1}^{f} \frac{\partial \vec{r}}{\partial t} \cdot \vec{a}_{\alpha} \dot{q}_{\alpha}, \qquad T_{2} = \frac{1}{2} m \sum_{\alpha=1}^{f} \sum_{\beta=1}^{f} a_{\alpha\beta} \dot{q}_{\alpha} \dot{q}_{\beta}, \qquad (35)$$

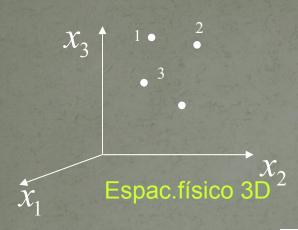
NOTA: para un sistema
$$U = U(\vec{r}, \vec{v}, t) = U(\vec{r_1}, \vec{r_2}, ..., \vec{r_N}, \vec{v_1}, ..., \vec{v_N}, t)$$

$$f \ sobrela \ part.n \equiv \vec{f}_n = -\frac{\partial U(\vec{r}, \vec{v}, t)}{\partial \vec{r}_n} + \left(\frac{d}{dt} \frac{\partial U(\vec{r}, \vec{v}, t)}{\partial \vec{v}_n}\right)$$

Notas sobre I1 (apuntes):

<u>Derivación geométrica de las ecua. De Lagrane.</u> <u>Ley de Newton en espacio de configuration 3N-D</u>

1.Ley de Newton en el espacio de configuración 3N-D



Ver artículo: J. Casey, Am. J. Phys. 62 (9), 1994.

$$\begin{cases}
F_i(n) = M(n)\ddot{x}_i(n) \\
i = 1, 2, 3; n = 1, 2, ...N \\
F_1(n), F_2(n), F_3(n)
\end{cases}$$

Geometrical derivation of Lagrange's equations for a system of particles

James Casey

Department of Mechanical Engineering, University of California at Berkeley, Berkeley, California 94720

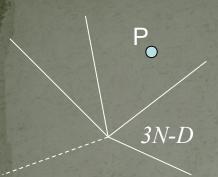
(Received 29 November 1993; accepted 6 April 1994)

A concise but general derivation of Lagrange's equations is given for a system of finitely many particles subject to holonomic and nonholonomic constraints. Based directly on Newton's second law, it takes advantage of an inertia-based metric to obtain a geometrically transparent statement of Lagrange's equations in configuration space. Illustrative examples are included.

Espacio configuración cartesiano.

$$P \Longrightarrow \left\{ x^{1}, x^{2}, x^{3}, x^{4}, \dots, x^{3N} \right\} \equiv$$

$$\equiv \left\{ x_{1}(1), x_{2}(1), x_{3}(1), \dots, x_{1}(N), x_{2}(N), x_{3}(N) \right\}$$



3N-Dcartesiano

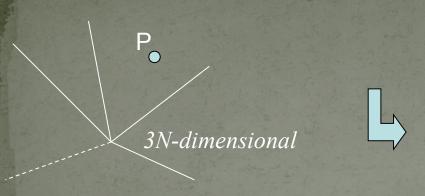
Se asocian 3N masas cartesianas según :

$$\equiv \{M(1), M(1), M(1), ..., M(N), M(N), M(N)\}$$

Y 3N componentes de una fuerza f :

$$\implies \{f_1, f_2 \ f_3, \dots, f_{3N}\} \equiv$$

$$\equiv \{F_1(1), F_2(1), F_3(1), \dots, F_1(N), F_2(N), F_3(N)\}$$



Las componentes de f en el espacio de configuración son :

$$f_k = m_k \ddot{x}^k$$
,
 $k = 1, 2, ..., 3N$,

La energía Cinética:

$$T = \frac{1}{2} \sum_{n=1}^{N} M(n) \left(\dot{x}_1(n)^2 + \dot{x}_2(n)^2 + \dot{x}_3(n)^2 \right) = \frac{1}{2} \sum_{k=1}^{3N} m_k (\dot{x}^k)^2$$

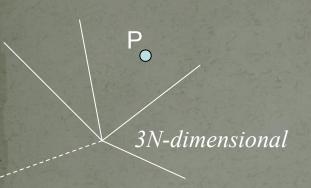
La correspondenciaentre ambos espacios se logra renumerando índices:

$$X_{i}(n) = x^{3n-3+i}, \quad con \quad n = 1, 2, ..., N$$

$$F_{i}(n) = f_{3n-3+i}, \quad donde \quad i = 1, 2, 3$$

$$M(n) = m_{3n-2} = m_{3n-1} = m_{3n},$$

Espacio vectorial de configuración:



• Se definen coordenadas de un punto P:

Conla masa total

$$\tilde{x}^{k} = x^{k} \sqrt{\frac{m_{k}}{m}},$$

$$m = \sum_{i=1}^{N} M(i),$$

•Y una métrica (norma) en espacio 3N-D:

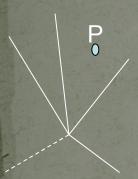
$$d_{OP}^{2} = \sum_{k=1}^{3N} (\tilde{x}^{k})^{2} = \frac{1}{m} \sum_{k=1}^{3N} m_{k} (x^{k})^{2},$$

- •P puede representar un vector de posición \vec{r} en el espacio de configuración
- •Con la base ortonormal $\{ec{ ilde{e}}_1, ec{ ilde{e}}_1, ec{ ilde{e}}_1, ec{ ilde{e}}_3, ec{ ilde{e}}_3,
 ight.$

$$\left\{\vec{\tilde{e}}_1,\vec{\tilde{e}}_1,\ldots,\vec{\tilde{e}}_{3N}\right\}$$

$$\vec{r} = \sum_{k=1}^{3N} \tilde{x}^k \vec{\tilde{e}}_k, \qquad \vec{r} \cdot \vec{r} = d_{OP}^2.$$

Espacio de configuración:



ulletY con un par de bases fijas recíprocas $ullet \{ ec{e}_{\scriptscriptstyle k} \} ullet \{ ec{e}^{\scriptscriptstyle k} \}$

$$\vec{e}_k = \vec{\tilde{e}}_k \sqrt{m_k/m}$$
, $\vec{e}^k = \vec{\tilde{e}}_k \sqrt{m/m_k}$,

$$\vec{e}^k \cdot \vec{e}_j = \delta_j^k$$
, $(j = 1, 2, ..., 3N; k = 1, 2, ..., 3N)$

•Posición y velocidad de P son : \vec{r}

$$\vec{r} = \sum_{k=1}^{3N} x^k \vec{e}_k, \qquad \vec{v} = \frac{d\vec{r}}{dt} = \sum_{k=1}^{3N} \dot{x}^k \vec{e}_k,$$

• lo que permite construir la fuerza del espacio de configuración sobre "una" partícula como

$$\vec{f} = \sum_{k=1}^{3N} f_k \vec{e}^k,$$

• Lo que lleva a relaciones de partícula en el espacio de configuración, con su métrica ds, como las de una partícula en espacio 3D (formalmente idéntico al caso del movimiento una partícula) :

$$\vec{f} = m \frac{d\vec{v}}{dt},$$

$$\vec{f} \cdot \vec{v} = \frac{dT}{dt}$$

$$\frac{1}{2}m\vec{v}\cdot\vec{v} = \frac{1}{2}m\sum_{k=1}^{3N}\sum_{j=1}^{3N}\dot{x}^{k}\dot{x}^{j}\vec{e}_{k}\cdot\vec{e}_{j} \equiv T,$$

$$ds^2 = d\vec{r} \cdot d\vec{r} = \frac{2T}{m} dt^2,$$

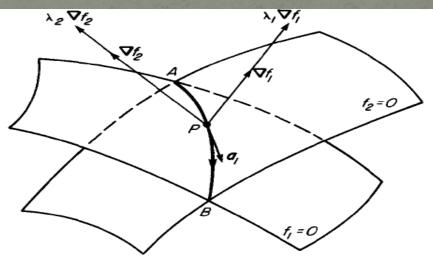
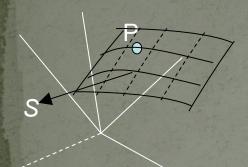


Fig. 2. Two constraint surfaces $f_1=0$ and $f_2=0$ intersecting to form a onedimensional configuration manifold AB. The tangent space to AB at the point occupied by the particle P is a straight line passing through this location and parallel to the vector \mathbf{a}_1 . Both ∇f_1 and ∇f_2 are perpendicular to \mathbf{a}_1 .

Variedades en el espa. De conf. y geometría



•Si las N partículas se someten a M ligaduras holónomas (geométricas)

$$\phi_j(\vec{r},t) = 0$$
, $(j = 1, 2, ..., M < 3N)$

- •Cada relación define una hipersuperficie de dimension 3N-1 .
- •La intersección de ellas es un subconjunto S de dimensión

$$f = 3N - M$$
.

P permanece en S descrito con un mínimo número de variables f para localizar a P en t en S. Las f coordeandas gaussianas se llaman variables generalizadas, y f es el número de grados de libertad del sistema. S es una variedad con geometría de Riemann.

$$\vec{r} = \vec{r}(q,t), \quad q = q_1, q_2, \dots, q_f.$$

$$\vec{a}_{\alpha} = \frac{\partial r}{\partial q_{\alpha}}$$

$$\alpha = 1, 2, ..., f$$

• Y con las relaciones de la Sección I.1.3, la energía cinética se puede descomponer según:

$$\vec{v} = \sum_{\alpha} \dot{q}_{\alpha} \vec{a}_{\alpha} + \frac{\partial \vec{r}(q,t)}{\partial t}, \qquad T = T_{2} + T_{1} + T_{0},$$

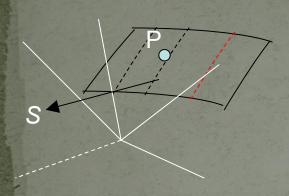
$$T_{0} = \frac{1}{2} m \left(\frac{\partial \vec{r}}{\partial t} \right)^{2}. \qquad T_{1} = m \sum_{\alpha=1}^{f} \left(\frac{\partial \vec{r}}{\partial t} \cdot \vec{a}_{\alpha} \right) \dot{q}_{\alpha}, \qquad T_{2} = \frac{1}{2} m \sum_{\alpha=1}^{f} \sum_{\beta=1}^{f} \left(\vec{a}_{\alpha} \cdot \vec{a}_{\beta} \right) \dot{q}_{\alpha} \dot{q}_{\beta} \ge 0,$$

métrica:
$$ds^2 = \sum_{\alpha=1}^f \sum_{\beta=1}^f (\vec{a}_{\alpha} \cdot \vec{a}_{\beta}) dq_{\alpha} dq_{\beta} = \frac{2T_2}{m} dt^2 \ge 0,$$

- T₂ es función homogénea de grado 2, forma cuadrática definida positiva.
- T debe coincidir con la energía cinética de las N partículas:

$$T = \frac{1}{2} \sum_{n=1}^{N} \sum_{\alpha=1}^{f} m_{\alpha} \left(\frac{\partial \overrightarrow{r_n}}{\partial q_{\alpha}} \dot{q}_{\alpha} + \frac{\partial \overrightarrow{r_n}}{\partial t} \right)^{2}$$

•Se llega a las ecuaciones de Lagrange como se hizo para una partícula.



• Con los vectores \vec{a}_{α} del espacio tangente como base: (Secc. I.1.4, pág. 5)

$$\vec{f} \cdot \vec{a}_{\alpha} = m \dot{\vec{v}} \cdot \vec{a}_{\alpha}, \qquad Q_{\alpha} = \vec{f} \cdot \vec{a}_{\alpha},$$

$$m\dot{\vec{v}}\cdot\vec{a}_{\alpha} = \frac{d}{dt}(m\vec{v}\cdot\vec{a}_{\alpha}) - m\vec{v}\cdot\frac{d\vec{a}_{\alpha}}{dt},$$

$$\vec{a}_{\alpha} = \frac{\partial \vec{r}}{\partial q_{\alpha}} = \frac{\partial \vec{v}}{\partial \dot{q}_{\alpha}}, \qquad \frac{d\vec{a}_{\alpha}}{dt} = \frac{\partial \vec{v}}{\partial q_{\alpha}}, \qquad \mathcal{Q}_{\alpha} = \frac{d}{dt}(m\vec{v} \cdot \frac{\partial \vec{v}}{\partial \dot{q}_{\alpha}}) - m\vec{v} \cdot \frac{\partial \vec{v}}{\partial q_{\alpha}},$$

$$Q_{\alpha} = \frac{d}{dt}(\frac{\partial T}{\partial \dot{q}_{\alpha}}) - \frac{\partial T}{\partial q_{\alpha}},$$

$$Si \quad \vec{f}^* = -\frac{\partial U}{\partial \vec{r}} + \frac{d}{dt} \frac{\partial U}{\partial \vec{v}}$$

 $Si \quad \vec{f}^* = -\frac{\partial U}{\partial \vec{r}} + \frac{d}{dt} \frac{\partial U}{\partial \vec{v}},$ Se define la lagrangiana $L(q, \dot{q}, t) = T(q, \dot{q}, t) - U(q, \dot{q}, t)$

$$\frac{d}{dt}(\frac{\partial L}{\partial \dot{q}_{\alpha}}) - \frac{\partial L}{\partial q_{\alpha}} = 0, \quad \alpha = 1, \dots, f.$$

La derivación geométrica simplifica la notación y demostraciones teóricas.

Introducción de las ligaduras.

En general, no todas las fuerzas derivan de un potencial generalizado *U.* Hay que partir de la ecuación general de Lagrange para T y descomponer cada Q en contribuciones.

Las ligaduras implican fuerzas sobre el sistema ¿Cuáles?

A) Si sólo hay M *ligaduras holónomas* éstas pueden usarse para definir 3N-M=f variables *independientes* {q}, el Principo Variacional da las ec. de Lagrange como en ausencia de ligaduras , pero se pierde información de fuerzas asociadas. $\phi_{I}(\vec{r}_{1}\vec{r}_{2},...,\vec{r}_{N},t) = \phi_{I}(\vec{r},t) = 0 , l = 1,2,...,M$

Otro procedimiento: Principio variacional condicionado y método de **multiplicadores de Lagrange**. Ejm. Caso en dos variables.

$$L = L(q_1, q_2, \dot{q}_1, \dot{q}_2, t) \rightarrow \delta I = 0 =$$

$$\delta \int_{t_1}^{t_2} L dt = \int \sum_{\alpha=1}^{2} \left[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_{\alpha}} \right) - \frac{\partial L}{\partial q_{\alpha}} \right] \delta q_{\alpha} dt$$

Pero las dos $\delta q_{\scriptscriptstyle R}$ no son independientes si hay una ligadura

$$\phi_{l}(q_{1},q_{2}) = 0 \Rightarrow \frac{\partial \phi_{l}}{\partial q_{1}} \delta q_{1} + \frac{\partial \phi_{l}}{\partial q_{2}} \delta q_{2} = 0$$

Hay que eliminar una variación de q en función de la otra para tener una variable Independiente.

NOTACIÓN (operador):
$$\ell_{\alpha}(L) = \frac{d}{dt} (\frac{\partial L}{\partial \dot{q}_{\alpha}}) - \frac{\partial L}{\partial q_{\alpha}}$$

Así, se elige:

$$\ell_1(L)(\frac{\partial \phi}{\partial q_1})^{-1} = \ell_2(L)(\frac{\partial \phi}{\partial q_2})^{-1} = \lambda(t)$$

Da dos ecuaciones, más la de ligadura para tres incógnitas.

$$\ell_{\alpha}(L) = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_{\alpha}} \right) - \frac{\partial L}{\partial q_{\alpha}} = \lambda \frac{\partial \phi}{\partial q_{\alpha}}, \alpha = 1, 2$$

En general:

$$\ell_{\alpha}(L) = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_{\alpha}} \right) - \frac{\partial L}{\partial q_{\alpha}} = \sum_{l=1}^{M} \lambda_{l}(t) \frac{\partial \phi_{l}(q, t)}{\partial q_{\alpha}}, \quad \alpha = 1, ..., 3N$$

Se tienen 3N+M ecuaciones (de Lagrange más ligaduras si todas se incluyen) e incógnitas (pueden incluirse sólo algunas ligaduras y multiplicadores)

Significado físico: se obtienen las mismas ecuaciones que si se hubiera usado el lagrangiano $\widehat{L} = L + \sum_{i} \lambda_{i}(t) \phi_{i}(q,t)$

Los multiplicadores están relacionados con las fuerzas generalizadas de ligadura (normales a superficies definidas por ligaduras, no hacen trabajo virtual).

$$\sum_{l} \lambda_{l}(t) \frac{\partial \phi_{l}(q,t)}{\partial q_{\alpha}} = \sum_{l} \lambda_{l}(t) \frac{\partial \phi_{l}(\vec{r},t)}{\partial \vec{r}} \cdot \frac{\partial \vec{r}}{\partial q_{\alpha}} = \vec{F}^{CH} \cdot \frac{\partial \vec{r}}{\partial q_{\alpha}}, (esp.config.)$$

Se obtienen así las fuerzas de ligadura en sistema holónomo de lagrangiana L

B) **Ligaduras anholónomas**. No hay procedimiento general, podría operase igual pero estas ligaduras tienen a las velocidades

$$\phi_r(q, \dot{q}, t) = 0, r = 1,...,L$$

Y en el cálculo variacional no se prescriben las variaciones virtuales de las velocidades. Aún así, daría

$$\widehat{L} = L + \sum_{l} \lambda_{l}(t) \phi_{l}(q, t)$$

$$\ell_{\alpha}(L) = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_{\alpha}} \right) - \frac{\partial L}{\partial q_{\alpha}} = -\sum_{l=1}^{L} \left[\lambda_{l}(t) \ell_{\alpha}(\phi_{l}) + \dot{\lambda_{l}}(t) \frac{\partial \phi_{l}}{\partial \dot{q}_{\alpha}} \right]$$

Con derivadas primeras de los multiplicadores, de los que no se conocen condiciones iniciales

Cada caso ha de estudiarse independientemente. Un caso particular simple es el de ligadura semiholónoma:

$$\sum_{\alpha=1}^{\alpha=f} \frac{B_{r\alpha}(q,t)\dot{q}_{\alpha} + B_{r}(q,t) = 0 \quad (57)$$

Por comparación y extensión del caso holónomo, pueden introducirse multiplicadores

$$\vec{f}_r^{CN} \cdot \vec{a}_{\beta} = \mu_r \vec{b}_r \cdot \vec{a}_{\beta} = \mu_r B_{r\beta}$$
, $(r = 1, 2, ..., L; \beta = 1, 2, ..., f)$

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{\alpha}} \right) - \frac{\partial T}{\partial q_{\alpha}} = Q_{\alpha}^* + \sum_{r=1}^{r=L} \mu_r B_{r\alpha}$$

Conviene descomponer (si es posible) las fuerzas según procedencia y partir de las ecuaciones generales de Lagrange para la T.

Por ejemplo:

$$\ell_{\alpha}(T) = \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{\alpha}} \right) - \frac{\partial T}{\partial q_{\alpha}} = Q_{\alpha}^{U} + Q_{\alpha}^{CH} + Q_{\alpha}^{CN} + Q_{\alpha}^{*}$$

Fuerzas generalizadas:derivadas de un potencial, asociadas a ligaduras holónomas, anholónomas y otras, como las disipativas de Rayeigh, giroscópicas etc.

Algunos casos de fuerzas:

a) giroscópicas, aquellas de potencia nula, es decir $\sum_{i=1}^{i=j} Q_i \dot{q}_i = 0$

con caso particular de potencial generalizado: $U(q,\dot{q}) = \sum_{i=1}^{f} \mathbb{I}_{i}(q)\dot{q}_{i}$ dando $Q_{\alpha}^{U} = \ell_{\alpha}(U)$

b) disipativas a aquellas cuya potencia es negativa y pueden derivar de una función W (potencial de Rayleigh) :

$$\sum_{i=1}^{i=f} Q_i \dot{q}_i < 0$$

$$\begin{cases} W = \frac{1}{2} \sum_{i,k=1}^{f} b_{ik} \dot{q}_i \dot{q}_k \\ Q_i = -\frac{\partial W(q,\dot{q},t)}{\partial \dot{q}_i} \end{cases} \longrightarrow Q_i = -\sum_{k=1}^{k=f} b_{ik} \dot{q}_k$$

Si el sistema es holónomo y todas las fuerzas derivan de potenciales generalizados se dice SISTEMA LAGRANGIANO y si es newtoniano se le dice NATURAL.

Sistemas Lagrangianos, sus ecuaciones de movimiento derivan de un lagrangiano de forma general $L=L_0+L_1+L_2$:

$$L_{2} = \frac{1}{2} \sum_{i,k=1}^{f} c_{ik}(q,t) \dot{q}_{i} \dot{q}_{k}, \quad L_{1} = \sum_{i=1}^{f} c_{i}(q,t) \dot{q}_{i}, \quad L_{0} = c_{0}(q,t)$$

y sus ecuaciones de movimiento son:

$$\frac{d}{dt} \left[\frac{\partial L(q, \dot{q}, t)}{\partial \dot{q}_i} \right] - \frac{\partial L(q, \dot{q}, t)}{\partial q_i} = 0,$$

Ejm. L=T-U(r).

Constantes del Movimiento. Simetrías y Conservación.

Constante del movimiento, integral primera: Cualquier función que permanece constante durante el movimiento del sistema.

Ejm. Si una coordenada no aparece explícitamente en *L*, se dice *cíclica o ignorable*, entonces su momento generalizado asociado en constante:

$$\frac{d}{dt} \left[\frac{\partial L(q, \dot{q}, t)}{\partial \dot{q}_{\alpha}} \right] = 0 \implies \frac{\partial L(q, \dot{q}, t)}{\partial \dot{q}_{\alpha}} = p_{\alpha} = cte.$$

$$Ejm2, si \frac{\partial L}{\partial t} = \frac{d}{dt} \left[L - \sum_{\alpha} \frac{\partial L}{\partial \dot{q}_{\alpha}} q_{\alpha} \right] = 0 \Rightarrow L - \sum_{\alpha} p_{\alpha} \dot{q}_{\alpha} = -H = Cte.$$

Las leyes de conservación están relacionadas con simetrías y con las llamadas transformaciones *invariantes* del sistema.

A veces la Lagrangiana es independiente de t, o de una coordenada q siendo entonces L invariante ante traslaciones temporales o espaciales.

El IMPORTANTE Teorema de Noether (Amelie Emmy Noether, 1832–1935)

establece que

A cada simetría de la lagrangiana le corresponde una ley de conservación

Si *L* es invariante ante traslaciones en el tiempo, en el espacio o ante rotaciones, se dan las leyes de conservación de la energía, del momento lineal o del angular, respectivamente

(consecuencias de la homogeneidad del tiempo, y de la homogeneidad e isotropía del espacio) .

I.2.5 Transformaciones invariantes. (Teorema de Noether)

Existen transformaciones puntuales invertibles dando ecuaciones explicitas de Lagrange exactamente iguales en la nuevas coordenadas: Se dice que las ecuaciones son invariantes a este tipo de transformaciones (la transformación de invariancia, se dice entonces que es una "simetría").

transformación puntual invertible, q' = q'(q,t)

$$\frac{d}{dt} \frac{\partial L'(q', \dot{q}', t)}{\partial \dot{q}'} - \frac{\partial L'(q', \dot{q}', t)}{\partial q'} = 0 \quad \Rightarrow \quad q'(t) \qquad q'(t) \equiv q'(q(t), t)$$

una transformación con $L'(q',\dot{q}',t) = L(q(q',t),\dot{q}(q',\dot{q}',t),t)$ – cambiar las q como

funciones de q'- es de invariancia si la Lagrangiana lo es

$$L'(q',\dot{q}',t) = L(q',\dot{q}',t)$$

de forma trivial, pero, más general es la condición:

$$L'(q',\dot{q}',t) = L(q',\dot{q}',t) + \frac{d\psi\ (q',t)}{dt}$$

$$L(q,\dot{q},t) = L(q',\dot{q}',t) + \frac{d\psi\ (q',t)}{dt}$$

$$L = \frac{1}{2}m\dot{x}^2, \quad \text{sea} \quad x' = x + a(t),$$

$$L = \frac{1}{2}m(\dot{x}' - \dot{a})^2 = \frac{1}{2}m\dot{x}'^2 + \frac{1}{2}m\dot{a}^2 - m\dot{a}\dot{x} = \frac{1}{2}m\dot{x}'^2 + \frac{d\psi(x',t)}{dt},$$

$$\Rightarrow \frac{\partial\psi}{\partial x'}\dot{x}' + \frac{\partial\psi}{\partial t} = \frac{1}{2}m\dot{a}^2 - m\dot{a}\dot{x}', \quad \Rightarrow \frac{\partial\psi}{\partial x'} = -m\dot{a}, \quad \frac{\partial\psi}{\partial t} = \frac{1}{2}m\dot{a}^2$$

$$\text{es decir: } \ddot{a} = 0, (\dot{a} = v_0, \dot{a} = v_0 t + a_0) \quad \psi = \frac{1}{2}m\dot{a}^2 t - m\dot{a}x',$$

$$x' = x + v_0 t + a_0. \quad \text{(Transformación de galileo)}.$$

Ejm. Partículas libres sin interacción
$$\begin{cases} \vec{r}_n = \vec{r}_n' - \vec{V}t - \vec{r}_0 \\ \vec{v}_n = \vec{v}_n' - \vec{V} \end{cases}$$

$$L'(\vec{r}', \vec{v}', t) = L(\vec{r}, \vec{v}, t) = L(\vec{r}_n' - \vec{V}t - \vec{r}, \vec{v}_n = \vec{v}_n' - \vec{V}, t) = \frac{1}{2} \sum_{n=1}^{\infty} m_n |\vec{v}_n' - \vec{V}|^2$$

Ejm. Transformación de Galileo: En todos los sistemas inerciales se verifican las mismas leyes de la mecánica.

Leyes invariantes ante transformaciones de Galileo. Ejm. Sistema newtoniano (natural) de partículas interactuando con potenciales *U*.

$$\vec{r}_{n} = \vec{r}_{n}' - \vec{V}t - \vec{r}_{0}$$

$$\vec{v}_{n} = \vec{v}_{n}' - \vec{V}$$

$$L'(\vec{r}', \vec{v}', t) = L(\vec{r}_{n}' - \vec{V}t - \vec{r}, \vec{v}_{n}' - \vec{V}, t) =$$

$$\frac{1}{2} \sum_{n} m_{n} |\vec{v}_{n}' - \vec{V}|^{2} - \sum_{n,k} U(|\vec{r}_{n}' - \vec{V}t - \vec{r}_{0} - (\vec{r}_{k}' - \vec{V}t - \vec{r}_{0})|) =$$

$$\frac{1}{2} \sum_{n} m_{n} |\vec{v}_{n}' - \vec{V}|^{2} - \sum_{n,k} U(|\vec{r}_{n}' - \vec{r}_{k}'|) = L(\vec{r}', \vec{v}', t) + \frac{d\psi(\vec{r}', t)}{dt}$$

$$con \qquad \psi(\vec{r}', t) = \sum_{n} m_{n} (V^{2}t / 2 - \vec{V} \cdot \vec{r}_{n}')$$

Ambas lagrangianas dan las mismas ecuaciones del movimiento, y difieren sólo en una constante. Y la transformación ... ¿es invariante?

$$\vec{r}_n = \vec{r}_n' - \frac{1}{2}\vec{a}t^2 - \vec{V}t - \vec{r}_0 \; ; \; \vec{v}_n = \vec{v}_n' - \vec{a}t - \vec{V}$$

Transformaciones infinitesimales. El cambio paramétrico

$$q' \equiv q'(q, t; \alpha)$$
 con p parámetros $\alpha \equiv \alpha_1, \alpha_2, \dots \alpha_p$ y $q = \{q_1, \dots, q_f\}$
siendo $q'(q, t; \alpha_0) = q$ con variación $\alpha = \alpha_0 + \delta \alpha$, ($\|\delta \alpha\| < \epsilon$)
$$q' = q'(q, t; \alpha_0) + \frac{\partial q'}{\partial \alpha} \Big|_{\alpha = 0} \delta \alpha = q + \frac{\partial q'}{\partial \alpha} \Big|_{\alpha = 0} \delta \alpha = q + \delta q$$

Para transformación infinitesimal invariante (pág. 16),

$$L(q,\dot{q},t) = L(q+\delta q,\dot{q}+\delta \dot{q},t) + \frac{d\delta \psi}{dt}$$

$$\frac{\partial L}{\partial \dot{q}} \delta q + \delta \psi = cte. \quad \Rightarrow \quad \sum_{j} \frac{\partial L}{\partial \dot{q}_{j}} \delta q_{j} + \delta \psi = cte$$

A cada transformación infinitesimal invariante se le asocia una ley de conservación o constante del movimiento

Debido a la homogeneidad e isotropía del espacio para un sistema aislado se deducen la conservación del momento lineal y del angular por transformaciones invariantes ante traslación y rotación global del sistema.

Sistema de partículas aislado Newtoniano

$$L = \sum_{i} \frac{1}{2} m_{i} \dot{\vec{r}}_{i}^{2} - \frac{1}{2} \sum_{i,j} V_{ij} (|\vec{r}_{i} - \vec{r}_{j}|)$$

Invariancia ante traslaciones: Aplicando Noether para una traslación del sistema:

$$\vec{r_i'} = \vec{r_i} + \vec{a} \qquad \sum_{i} \frac{\partial L}{\partial \dot{\vec{r_i}}} \cdot \delta \vec{r_i} = \sum_{i} \frac{\partial L}{\partial \dot{\vec{r_i}}} \cdot \delta \vec{a} = \sum_{i} m_i \dot{\vec{r_i}} \cdot \delta \vec{a} = \vec{P} \cdot \delta \vec{a} = cte, \Rightarrow \vec{P} = cte$$

Puede conservarse **sólo alguna**(s) **componente**(s) del momento incluso en sistemas no aislados: aquellas en las que la traslación del sistema está en dirección de fuerza invariante (Ejm. Coordenada cíclica) También con **ligaduras holónomas** (si son invariantes también).

Invariancia ante rotaciones: Ante una rotación global del sistema entorno al eje *u*

$$\vec{r}_{i}' = \vec{r}_{i} + \delta \vec{\omega} \times \vec{r}_{i} = \vec{r}_{i} + (\vec{u} \times \vec{r}_{i})\delta \theta \qquad \qquad \dot{\vec{r}}_{i}'^{2} = \dot{\vec{r}}_{i}^{2} + 2\dot{\vec{r}}_{i} \cdot (\vec{u} \times \dot{\vec{r}}_{i})\delta \theta = \dot{\vec{r}}_{i}^{2}$$

$$\sum_{i} \frac{\partial L}{\partial \dot{\vec{r}}_{i}} \delta \vec{r}_{i} = \sum_{i} \frac{\partial L}{\partial \dot{\vec{r}}_{i}} \cdot (\vec{u} \times \vec{r}_{i})\delta \theta = \sum_{i} m_{i} \dot{\vec{r}}_{i} \cdot (\vec{u} \times \vec{r}_{i})\delta \theta = L_{u} \delta \theta = cte, \Rightarrow \vec{L} = cte$$

La **conservación de la energía** es consecuencia de la homogeneidad del tiempo y de la invariancia de la *L* ante traslaciones temporales, *también* válida si hay ligaduras No-holónomas ideales, *ver* (83):

$$\sum_{\alpha=1}^{\alpha=f} B_{r\alpha} \dot{q}_{\alpha} = 0 H = \sum_{\alpha} p_{\alpha} \dot{q}_{\alpha} - L = Cte. si \frac{\partial L}{\partial t} = 0.$$

Transformaciones infinitesimales. El cambio paramétrico

$$q' \equiv q'(q,t;\alpha)$$
 con p parámetros $\alpha \equiv \alpha_1, \alpha_2, \dots \alpha_p$ y $q = \{q_1, \dots, q_f\}$
siendo $q'(q,t;\alpha_0) = q$ con variación $\alpha = \alpha_0 + \delta \alpha$, ($\|\delta \alpha\| < \epsilon$)
$$q' = q'(q,t;\alpha_0) + \frac{\partial q'}{\partial \alpha} \Big|_{\alpha = 0} \delta \alpha = q + \frac{\partial q'}{\partial \alpha} \Big|_{\alpha = 0} \delta \alpha \equiv q + \delta q$$

Para transformación infinitesimal invariante (pág. 16),

$$L(q,\dot{q},t) = L(q+\delta q,\dot{q}+\delta \dot{q},t) + \frac{d\delta \psi}{dt}$$

$$\frac{\partial L}{\partial \dot{q}} \delta q + \delta \psi = cte. \quad \Rightarrow \quad \sum_{j} \frac{\partial L}{\partial \dot{q}_{j}} \delta q_{j} + \delta \psi = cte$$

A cada transformación infinitesimal invariante se le asocia una ley de conservación o constante del movimiento

Debido a la homogeneidad e isotropía del espacio para un sistema aislado se deducen la conservación del momento lineal y del angular por transformaciones invariantes ante traslación y rotación global del sistema.

Sistema de partículas aislado Newtoniano

$$L = \sum_{i} \frac{1}{2} m_{i} \dot{\vec{r}}_{i}^{2} - \frac{1}{2} \sum_{i,j} V_{ij} (|\vec{r}_{i} - \vec{r}_{j}|)$$

Invariancia ante traslaciones: Aplicando Noether para una traslación del sistema:

$$\vec{r_i'} = \vec{r_i} + \vec{a} \qquad \sum_{i} \frac{\partial L}{\partial \dot{\vec{r_i}}} \cdot \delta \vec{r_i} = \sum_{i} \frac{\partial L}{\partial \dot{\vec{r_i}}} \cdot \delta \vec{a} = \sum_{i} m_i \dot{\vec{r_i}} \cdot \delta \vec{a} = \vec{P} \cdot \delta \vec{a} = cte, \Rightarrow \vec{P} = cte$$

Puede conservarse **sólo alguna**(s) **componente**(s) del momento incluso en sistemas no aislados: aquellas en las que la traslación del sistema está en dirección de fuerza invariante (Ejm. Coordenada cíclica) También con **ligaduras holónomas** (si son invariantes también).

Invariancia ante rotaciones: Ante una rotación global del sistema entorno al eje *u*

$$\vec{r}_{i}' = \vec{r}_{i} + \delta \vec{\omega} \times \vec{r}_{i} = \vec{r}_{i} + (\vec{u} \times \vec{r}_{i})\delta \theta \qquad \qquad \dot{\vec{r}}_{i}'^{2} = \dot{\vec{r}}_{i}^{2} + 2\dot{\vec{r}}_{i} \cdot (\vec{u} \times \dot{\vec{r}}_{i})\delta \theta = \dot{\vec{r}}_{i}^{2}$$

$$\sum_{i} \frac{\partial L}{\partial \dot{\vec{r}}_{i}} \delta \vec{r}_{i} = \sum_{i} \frac{\partial L}{\partial \dot{\vec{r}}_{i}} \cdot (\vec{u} \times \vec{r}_{i})\delta \theta = \sum_{i} m_{i} \dot{\vec{r}}_{i} \cdot (\vec{u} \times \vec{r}_{i})\delta \theta = L_{u} \delta \theta = cte, \Rightarrow \vec{L} = cte$$

La **conservación de la energía** es consecuencia de la homogeneidad del tiempo y de la invariancia de la *L* ante traslaciones temporales, *también* válida si hay ligaduras No-holónomas ideales, *ver* (83):

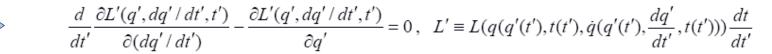
$$\sum_{\alpha=1}^{\alpha=f} B_{r\alpha} \dot{q}_{\alpha} = 0 H = \sum_{\alpha} p_{\alpha} \dot{q}_{\alpha} - L = Cte. si \frac{\partial L}{\partial t} = 0.$$

I.4 Transformaciones puntuales que involucren el tiempo (T^a de Noether).

Consideremos la transformación puntual q' = q'(q,t); t' = t'(t)

las nuevas variables

$$S = \int\limits_{t_1'}^{t_2'} L(q(q'(t'), t(t'), \dot{q}(q'(t'), \frac{dq'}{dt'}, t(t'))) \frac{dt}{dt'} d\ 't \equiv \int\limits_{t_1'}^{t_2'} L'(q', \frac{dq'}{dt'}, t(t'), \dot{q}(q'(t'), \frac{dq'}{dt'}, t') d\ 't,$$



Si la transformación puntual es invariante

$$L(q(q'(t'),t(t'),\dot{q}(q'(t'),\frac{dq'}{dt'},t(t')))\frac{dt}{dt'}=L(q',\frac{dq'}{dt'},t')+\frac{d\psi}{dt'}$$

la transformación infinitesimal invariante: $q' = q + \delta q$, $t' = t + \delta t$ $\frac{dt'}{dt} = 1 + \delta t$,

La condición de invariancia es $L(q,\dot{q},t)\frac{dt}{dt'} = L(q',\frac{dq'}{dt'},t') + \frac{d\psi}{dt'}, \Rightarrow L(q,\dot{q},t) = L(q',\frac{dq'}{dt'},t')\frac{dt'}{dt} + \frac{d\psi}{dt}$

$$L(q,\dot{q},t) = L(q + \delta q, \dot{q} + \delta \dot{q} - \dot{q}\delta \dot{t}, t + \delta t) \frac{dt'}{dt} + \frac{d\delta \psi}{dt} \implies \frac{\partial L}{\partial \dot{q}} \delta q + \delta \psi - H\delta t = cte \qquad (106)$$

Tema II: Mecánica Hamiltoniana

I.2.4 Ecuaciones canónicas de Hamilton.

Como en Termodinámica, pueden aplicarse transformaciones de Legendre para tener funciones con variables independientes distintas:

Ejm. F es transformada de Legendre de la energía interna U:

$$dU = TdS - PdV$$
, sea $F = U - PV \Rightarrow dF = -PdV - SdT$

Análogamente, puede definirse otra función H con otras variables independientes distintas las de la Lagrangiana:

$$p_{j} = \frac{\partial L}{\partial \dot{q}_{j}}, \qquad \Rightarrow \quad \dot{q}_{j} = \dot{q}_{j}(q, p, t) \quad , \qquad \qquad H(q, p, t) \equiv \sum_{i=1}^{f} \dot{q}_{i} p_{i} - L(q, \dot{q}, t) \tag{94}$$

Diferenciando H(q,p,t) se obtendrán 2f ecuaciones diferenciales de primer grado:

$$dH = \sum_{j=1}^{f} \frac{\partial H}{\partial q_{j}} dq_{j} + \sum_{j=1}^{f} \frac{\partial H}{\partial p_{j}} dp_{j} + \frac{\partial H}{\partial t} dt = \sum_{j=1}^{f} \dot{q}_{j} dp_{j} - \sum_{j=1}^{f} \frac{\partial L}{\partial q_{j}} dq_{j} - \frac{\partial L}{\partial t} dt$$

es decir

$$\frac{\partial H(q,p,t)}{\partial q_j} = -\frac{\partial L(q,\dot{q},t)}{\partial q_j}\,, \qquad \frac{\partial H(q,p,t)}{\partial p_j} = \dot{q}_j \quad, \qquad \frac{\partial H(q,p,t)}{\partial t} = -\frac{\partial L(q,\dot{q},t)}{\partial t} \qquad \qquad \frac{dH}{dt} = \frac{\partial H(q,p,t)}{\partial t} = -\frac{\partial L(q,\dot{q},t)}{\partial t}$$

Equivalentemente, puede pasarse de H a L:

$$\frac{\partial H(q,p,t)}{\partial p_j} = \dot{q}_j \,, \qquad \Rightarrow \quad p_j = p_j(q,\dot{q},t) \,, \label{eq:posterior}$$

$$L(q, \dot{q}, t) \equiv \sum_{i=1}^{f} \dot{q}_i p_i - H(q, p, t)$$

Ecuaciones de Hamilton. Notación y comentarios.

Nota:Las 2n ecuaciones pueden derivarse del Principio variacional de Hamilton (modificado) sin imponer que p(t) esté fijo en los instantes finales.

$$S = \int_{t_1}^{t_2} L(q, \dot{q}, t) dt \quad \text{con} \quad q(t_1) \quad \text{y} \quad q(t_2) \quad \text{fijados:}$$

$$\delta S = \delta \int_{t_1}^{t_2} \left(p \cdot \dot{q} - H(q, p, t) \right) dt = -\int_{t_1}^{t_2} (\dot{p} + \frac{\partial H}{\partial q}) \cdot \delta q dt + \int_{t_1}^{t_2} (\dot{q} - \frac{\partial H}{\partial p}) \cdot \delta p dt + \left(p \cdot \delta q \right) \Big|_{t_1}^{t_2}$$

$$= -\int_{t_1}^{t_2} (\dot{p} + \frac{\partial H}{\partial q}) \cdot \delta q dt = 0 \Rightarrow \dot{p}_k + \frac{\partial H}{\partial q_k} = 0 \Rightarrow \begin{cases} \dot{q}_i = \frac{\partial H(q, p, t)}{\partial p_i} \\ \dot{p}_i = -\frac{\partial H(q, p, t)}{\partial q_i} \end{cases}$$

Se pueden escribir en notación matricial o simpléctica (II. 1):

$$\eta = \begin{pmatrix} q \\ p \end{pmatrix} = \begin{pmatrix} q_1 \\ \vdots \\ q_n \\ p_1 \\ \vdots \\ p_n \end{pmatrix} \Rightarrow \frac{d\eta}{dt} = \mathbf{J} \cdot \frac{\partial H}{\partial \eta} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \frac{\partial H}{\partial \eta}$$

$$\vdots$$

$$\mathbf{J}^2 : -1, \ \mathbf{J}^T \cdot \mathbf{J} : 1, (\mathbf{J}^T : \mathbf{J}^{-1} : -\mathbf{J})$$

Para evaluar *la derivada temporal* de una función u(q,p,t) a lo largo de las soluciones del sistema hamiltoniano, en el espacio de fases asociado, conviene formalizar cálculos con el **Corchete de Poisson**.

II.1.1 Constantes del movimiento. Corchete de Poisson

$$\frac{du}{dt} = \left(\frac{\partial u}{\partial \eta}\right)^{T} \cdot \frac{d\eta}{dt} + \frac{\partial u}{\partial t} = \left(\frac{\partial u}{\partial \eta}\right)^{T} \cdot \mathbf{J} \cdot \frac{\partial H}{\partial \eta} + \frac{\partial u}{\partial t}$$

El corchete de Poisson de dos funciones u, v se define:

$$[u,v]_{q,p} = \sum_{i=1}^{n} \left(\frac{\partial u}{\partial q_i} \frac{\partial v}{\partial p_i} - \frac{\partial u}{\partial p_i} \frac{\partial v}{\partial q_i} \right)$$

 $\begin{smallmatrix}0&q_i&0&p_i&&0&p_i&0&q_i\end{smallmatrix}$

 $\frac{du}{dt} = \left[u, H\right]_{q,p} + \frac{\partial u}{\partial t}$

Los corchetes fundamentales son:

$$[q_i, q_k] = [p_i, p_k] = 0$$
;

Entonces:

$$[q_j, p_k] = -[p_k, q_j] = \delta_{jk}$$

 $[u,v]_{\eta} = \left(\frac{\partial u}{\partial n}\right)^{T} \cdot \mathbf{J} \cdot \frac{\partial v}{\partial n}$

Y las ecuaciones de Hamilton quedan:

$$\begin{cases} \dot{q}_{i} = [q_{i}, H] \\ \dot{p}_{i} = [p_{i}, H] \end{cases} \quad o \text{ bien } \quad \frac{d\eta}{dt} = J \cdot \frac{\partial H}{\partial \eta} = [\eta, H]$$

Propiedades (corchete nulo,, antisimetría, linealidad, producto e Identidad de Jacobi):

a)
$$[u,u]=0$$
.

b)
$$[u,v] = -[v,u]$$
.

c)
$$[au + bv, w] = a[u, w] + b[v, w]$$
, a, b constantes.

d)
$$[uv,w] = [u,w]v + u[v,w]$$

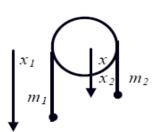
e)
$$[u,[v,w]]+[v,[w,u]]+[w,[u,v]]=0$$
 . (identidad de Jacobi)

Aplicado a H, y si u(p,q,t) es una constante del movimiento:

Si u y v son dos constantes de movimeinto ¿lo será [u,v]?

$$\frac{dH}{dt} = \frac{\partial H}{\partial t}$$
 [H,u] = $\frac{\partial u}{\partial t}$

Ejm. Problemas. 1: La tensión es el multiplicador de Lagrange

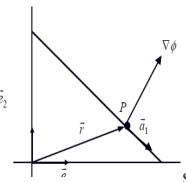


$$\phi = x_1 + x_2 + cte = 0 \; , \qquad \vec{r} = x_1 \vec{e}_1 + x_2 \vec{e}_2 \; ,$$

$$\begin{array}{c} x \\ x_2 \\ x_2 \end{array} \quad \text{variedad de configuración } \vec{r}(x_1) = x_1 \vec{e}_1 + (cte - x_1) \vec{e}_2 \; , \\ \vec{a}_1 = \frac{\partial \vec{r}}{\partial x_1} = \vec{e}_1 - \vec{e}_2 \; \; , \quad \vec{f} = (m_1 g - T_h) \vec{e}^1 + (m_2 g - T_h) \vec{e}^2 \; \; , \end{array}$$

$$\left| \vec{e}_1 \right| = \left(m_1 \, / \, m \right)^{1/2} \ , \quad \left| \vec{e}_2 \right| = \left(m_2 \, / \, m \right)^{1/2} \ , \quad m = m_1 + m_2$$

$$\begin{split} \nabla \phi &= \vec{e}^1 + \vec{e}^2 \,, \qquad \vec{f}^{CH} = -T_h (\vec{e}^1 + \vec{e}^2) = -T_h \nabla \phi \quad, \Rightarrow \qquad \vec{f}^{CH} \cdot \vec{a}_1 = -T_h (\vec{e}^1 + \vec{e}^2) \cdot (\vec{e}_1 - \vec{e}_2) \equiv 0 \\ \vec{v} &= \dot{x}_1 \vec{a}_1 \,, \qquad \qquad T &= \frac{1}{2} m \, \dot{x}_1^2 \vec{a}_1 \cdot \vec{a}_1 = \frac{1}{2} (m_1 + m_2) \, \dot{x}_1^2 \quad, \\ Q_1 &= \vec{f} \cdot \vec{a}_1 = (m_1 g \, \vec{e}^1 + m_2 g \, \vec{e}^2) \cdot (\vec{e}_1 - \vec{e}_2) = (m_1 - m_2) g \end{split}$$



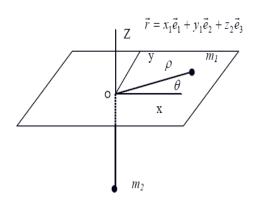
$$\frac{d}{dt}\frac{\partial T}{\partial \dot{x}_1} - \frac{\partial T}{\partial x_1} = Q_1 , \quad \Rightarrow \quad (m_1 + m_2) \ddot{x}_1 = (m_1 - m_2)g .$$

Si no se proyecta sobre al variedad de configuración, entonces $\vec{a}_1 = \frac{\partial r}{\partial x_1} = \vec{e}_1$, $\vec{a}_2 = \frac{\partial r}{\partial x_2} = \vec{e}_2$

$$Q_1 = \vec{f} \cdot \vec{a}_1 = m_1 g - T_h \; ,$$

$$Q_2 = \vec{f} \cdot \vec{a}_2 = m_2 g - T_h$$

$$Q_1 = \vec{f} \cdot \vec{a}_1 = m_1 g - T_h \; , \qquad \qquad Q_2 = \vec{f} \cdot \vec{a}_2 = m_2 g - T_h \; , \qquad \qquad T = \frac{1}{2} m_1 \dot{x}_1^2 + \frac{1}{2} m_2 \dot{x}_2^2 \quad . \label{eq:Q1}$$



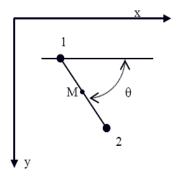
$$T = \frac{1}{2} m_1 (\dot{\rho}^2 + \rho^2 \dot{\theta}^2) + \frac{1}{2} m_2 \dot{z}_2^2,$$

ligadura :
$$\phi = \sqrt{x_1^2 + y_1^2} - z_2 - L \equiv \rho - z_2 - L = 0$$

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{\rho}} - \frac{\partial T}{\partial \rho} = Q_{\rho} \ , \qquad \Rightarrow \qquad (m_1 + m_2) \ddot{\rho} - m_1 \rho \, \dot{\theta}^2 = -m_2 g$$

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{\theta}} - \frac{\partial T}{\partial \theta} = Q_\theta \quad , \quad \Rightarrow \quad \quad \frac{d}{dt}(m_1\,\rho^2\dot{\theta}) = 0 \quad ,$$

$$T = \frac{1}{2} m_1 (\dot{\rho}^2 + \rho^2 \dot{\theta}^2) + \frac{1}{2} m_2 \dot{z}_2^2, \qquad \begin{cases} m_1 \ddot{\rho} - m_1 \rho \, \dot{\theta}^2 = -T_h, & \frac{d}{dt} (m_1 \, \rho^2 \dot{\theta}) = 0, \\ m_2 \ddot{z}_2 = T_h - m_2 g, & \\ \phi = \rho - z_2 - L = 0 \end{cases}$$



ligadura:
$$\dot{x} sen \theta - \dot{y} cos \theta = 0$$
, $(B_{11}\dot{x} + B_{12}\dot{y} + B_{13}\dot{\theta} + B_1 = 0)$,

$$\begin{split} &\frac{d}{dt}\frac{\partial T}{\partial \dot{x}} - \frac{\partial T}{\partial x} = \mu_1 B_{1x} \,, \\ &\frac{d}{dt}\frac{\partial T}{\partial \dot{y}} - \frac{\partial T}{\partial y} = 2m_0 g \sec \alpha + \mu_1 B_{1y} \,, \\ &\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{\theta}}\right) - \frac{\partial T}{\partial \theta} = \mu_1 B_{1\theta} \,, \end{split}$$

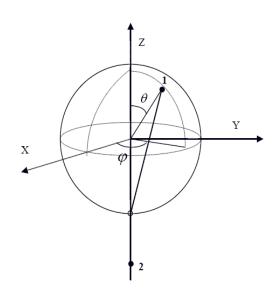
$$\dot{x} \operatorname{sen} \theta - \dot{y} \cos \theta = 0$$
,

$$2m_0\ddot{x} = \mu_1 \sin\theta ,$$

$$2m_0\ddot{y} = 2m_0g \sin\alpha - \mu_1 \cos\theta$$

$$2m_0L^2\ddot{\theta} = 0 ,$$

$$\dot{x} \operatorname{sen} \theta - \dot{y} \cos \theta = 0$$
,



$$\vec{r}(\theta, \varphi) = Rsen\theta\cos\varphi \,\vec{e}_1 + Rsen\thetasen\varphi \,\vec{e}_2 + R\cos\theta \,\vec{e}_3 + 2R(\cos(\theta/2) - 3/2) \,\vec{e}_4 + 2R(\cos(\theta/2) - 3/2) \,\vec{e}_5 + 2R(\cos(\theta/2$$

$$T(\theta, \varphi, \dot{\theta}, \dot{\varphi}) = \frac{1}{2} (m_1 + m_2) \left(\dot{\varphi} \, \vec{a}_\varphi + \dot{\theta} \, \vec{a}_\theta \right) \cdot \left(\dot{\varphi} \, \vec{a}_\varphi + \dot{\theta} \, \vec{a}_\theta \right) = \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2$$

$$Z_2 = 2R(\cos(\theta/2) - 3/2)$$

$$T = \frac{1}{2}m_1R^2(\dot{\theta}^2 + sen^2\theta\,\dot{\phi}^2) + \frac{1}{2}m_2R^2sen^2(\theta/2)\dot{\theta}^2\,, \qquad U = m_1gR\cos\theta + m_2g2R(\cos(\theta/2) - 3/2)$$

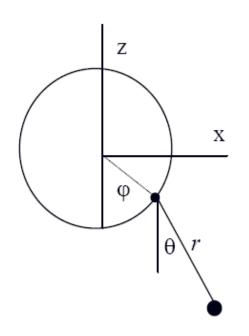
$$\begin{split} \frac{d}{dt} \frac{\partial L}{\partial \dot{\phi}} - 0 &= 0 \;, & \frac{\partial L}{\partial \dot{\phi}} = m_1 R^2 sen^2 \theta \; \dot{\phi} = cte \\ \frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}} - \frac{\partial L}{\partial \theta} &= 0 \;, & \frac{\partial L}{\partial t} = 0 \; \Longrightarrow \; T + U = cte \;. \end{split}$$

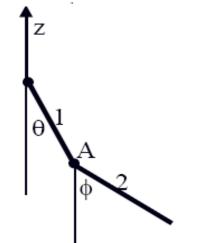
$$\dot{\varphi} = \omega = At + B$$
, $\varphi = \frac{At^2}{2} + Bt$, $(\varphi(0) = 0)$.

 θ , r coordenadas generalizadas.

$$x = R \operatorname{sen} \varphi + r \operatorname{sen} \theta$$
, $z = -R \cos \varphi - r \cos \theta$.
en donde φ es una función explícita del tiempo.

$$\begin{split} T(r,\theta,\dot{r},\dot{\theta},t) &= \frac{1}{2}m(\dot{x}^2 + \dot{z}^2) = \frac{1}{2}m((R\omega\cos\varphi + \dot{r}\sin\theta + r\dot{\theta}\cos\theta)^2 + \\ &+ (R\omega\sin\varphi - \dot{r}\cos\theta + r\dot{\theta}\sin\theta)^2) \ , \\ U(r,\theta,t) &= \frac{1}{2}k\,r^2 - mg(R\cos\varphi + r\cos\theta) \ , \end{split}$$





Sean θ y ϕ coordenadas generalizadas.

$$\begin{split} T &= \frac{1}{6} m_1 l_1^2 \dot{\theta}^2 + \frac{1}{24} m_2 l_2^2 \dot{\phi}^2 + \frac{1}{2} m_2 v_{M2}^2 \,, \\ \overline{v}_{M2} &= l_1 \dot{\theta} \, \overline{u}_\theta + \frac{l_2}{2} \dot{\phi} \, \overline{u}_\phi \quad. \\ v_M^2 &= l_1^2 \dot{\theta}^2 + \frac{l_2^2}{4} \dot{\phi}^2 + l_1 l_2 \dot{\theta} \dot{\phi} \cos(\phi - \theta) \,, \\ U &= -m_1 g \frac{l_1}{2} \cos \theta - m_2 g (l_1 \cos \theta + \frac{l_2}{2} \cos \phi) \,, \end{split}$$

Coordenadas generalizadas: (x, y) del CM y θ , φ .

$$\vec{\omega} = - \dot{\theta} \, \vec{i} \, ' + \dot{\varphi} \, \vec{k} \ , \label{eq:omega_decomposition}$$

Ecuaciones de ligadura no holónoma:

$$\dot{x} - R\dot{\theta}\cos\varphi = 0 \ , \qquad \dot{y} - R\dot{\theta}\sin\varphi = 0 \ .$$

$$T = \frac{1}{2}M(\dot{x}^2 + \dot{y}^2) +$$

$$+\frac{1}{2}\left(-\dot{\theta},-\dot{\phi}\sin\theta,\dot{\phi}\cos\theta\right)\begin{bmatrix}\frac{1}{2}MR^{2} & 0 & 0\\ 0 & \frac{1}{4}MR^{2} & 0\\ 0 & 0 & \frac{1}{4}MR^{2}\end{bmatrix}$$

$$\frac{1}{2} \left(-\dot{\theta}, -\dot{\phi} \sin \theta, \dot{\phi} \cos \theta \right) \begin{bmatrix} \frac{1}{2} MR^2 & 0 & 0 \\ 0 & \frac{1}{4} MR^2 & 0 \\ 0 & 0 & \frac{1}{4} MR^2 \end{bmatrix} \begin{bmatrix} -\dot{\theta} \\ -\dot{\phi} \sin \theta \\ \dot{\phi} \cos \theta \end{bmatrix} = \frac{1}{2} M \left(\dot{x}^2 + \dot{y}^2 \right) + \frac{1}{4} MR^2 \left(\dot{\theta}^2 + \frac{\dot{\phi}^2}{2} \right),$$

$$\begin{split} \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{x}} \right) - \frac{\partial T}{\partial x} &= \sum_{\beta} \mu_{\beta} B_{\beta x} = \mu_{1} \quad , \\ \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{y}} \right) - \frac{\partial T}{\partial y} &= \sum_{\beta} \mu_{\beta} B_{\beta y} = \mu_{2} \quad , \\ \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{\theta}} \right) - \frac{\partial T}{\partial \theta} &= \sum_{\beta} \mu_{\beta} B_{\beta \theta} = -\mu_{1} R \cos \varphi - \mu_{2} R \sin \varphi \quad , \qquad \text{(incógnitas: } x \,, \, y \,, \, \theta \,, \, \varphi \,, \, \mu_{1} \,, \, \mu_{2}) \end{split}$$

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{\varphi}} \right) - \frac{\partial T}{\partial \varphi} = \sum \mu_{\beta} B_{\beta \varphi} \equiv 0 \; , \label{eq:delta_t}$$

 $\dot{x} - R\dot{\theta}\cos\varphi = 0$,

$$\dot{y} - R\dot{\theta} \operatorname{sen} \varphi = 0$$
,