

The plasma length and time scales

Prof. L. Conde

Departamento de Física Aplicada Página personal: <u>http://plasmalab.aero.upm.es/~lcl/</u>

Curso 2015-2016

Plasma length and time scales, ...

The damping and/or attenuation of small amplitude fluctuations of the equilibrium takes place over characteristic length and time scales.

 $abla \cdot m{E} = rac{e}{\epsilon_o} (n_i - n_e) \quad n_i
eq n_e \quad m{E} \simeq m{E}_1 \quad \text{small amplitude perturbations}$

- Time fluctuations: Plasma frequency
- Number of charges: Plasma parameter

 $\omega_{pe} = \sqrt{\frac{e^2 n_{eo}}{\epsilon_o m_e}} \qquad \qquad \frac{\omega_{pi}}{\omega_{ne}} = \sqrt{\frac{m_e}{m_i}}$

The Debye length and shielding, ...

The initial equilibrium: $\mathbf{E}_o = 0$ $n_{eo} \simeq n_{io} = n_o$ $k_B T_e; k_B T_i$

where we introduce an small perturbation in the electric charge,

The field
$$\mathbf{E}_{i}(\mathbf{r})$$
 is governed by the Poisson equation, $\nabla \cdot \mathbf{E} = \frac{1}{\epsilon_{o}}$
 $\nabla \cdot \mathbf{E}_{1} = \frac{q}{\epsilon_{o}}\delta(\mathbf{r}) + \frac{e}{\epsilon_{o}}[n_{i}(\mathbf{r}) - n_{e}(\mathbf{r})])$ where, $n_{\alpha}(\mathbf{r}) = n_{\alpha o} \exp\left(\pm \frac{e\,\varphi_{1}(\mathbf{r})}{k_{B}T_{\alpha}}\right)$

Small amplitude perturbations of the charge/electric field means that the *thermal* energy $|e \varphi(\mathbf{r})|$ dominates over the electrostatic energy k_BT

$$\alpha = e, i$$
 $\left| \frac{e \varphi_1(\mathbf{r})}{k_B T_{\alpha}} \right| \ll 1$ we approximate $n_{\alpha}(\mathbf{r}) \simeq n_{\alpha o} \left(1 \pm \frac{e \varphi_1(\mathbf{r})}{k_B T_{\alpha}} \right)$

Debye shielding, ...

$$-\nabla^2 \varphi_1(\mathbf{r}) = \frac{1}{\epsilon_o} \left[\delta \rho_{ext} + \left(\frac{e^2 n_o}{k_B T_e} \varphi_1(\mathbf{r}) \right) + \left(\frac{e^2 n_o}{k_B T_i} \varphi_1(\mathbf{r}) \right) \right] \quad \alpha = e, i$$

that introduces the Debye lengths,

$$\lambda_{D\alpha} = \sqrt{\frac{\epsilon_o k_B T_\alpha}{e^2 \, n_o}}$$

Setting,

$$\frac{1}{\Lambda^2} = \frac{1}{\lambda_{De}^2} + \frac{1}{\lambda_{Di}^2} \qquad \left(\nabla^2 - \frac{1}{\Lambda^2}\right) \varphi_1(\mathbf{r}) = -\frac{q}{\epsilon_o} \delta(\mathbf{r}) \qquad \varphi_1(\mathbf{r}) = \frac{q}{4\pi\epsilon_o} \frac{e^{-r/\Lambda}}{r}$$

The perturbations of the electric charge and/or plasma potential decay in space with an exponential rate governed by λ_{D}

The Debye length accounts for thermal effects, the size $\sim \lambda_D$ of the perturbed region increases with k_BT

This is a linearization only valid whereas,

 $\frac{e \varphi_1(\mathbf{r})}{k_D T} \ll 1$ We deal with a non linear Poisson equation otherwise,

Plasma	n _e (cm ⁻³)	K _B T _e (eV)	λ_{De} (cm)	f _{pe} (Hz)	$n_e \lambda_{De}^3$
Interstellar gas	I	I	700	6,0 ×104	4 ×10 ⁸
Solar corona	10 ⁹	100	0,2	2,0 ×10 ⁹	8 ×10 ⁶
Solar atmosphere Gas discharge	I0 ¹⁴	I	7,0 ×10 ⁻⁵	6,0 ×1011	40
Tokamak	1014	I0 ⁴	2,0 ×10 ⁻³	2,0 ×10 ¹²	6 ×10 ⁶

Values from NRL Plasma Formulary 2007. This practical reference could be downloaded for free at; <u>http://wwwppd.nrl.navy.mil/nrlformulary/</u>

and we consider a one small perturbation of the electric charge in one dimension as in the figures,

$$\rho = -e \, n_o(A \, \delta X)$$

 $\int_{S} \mathbf{E}_{1} \cdot d\mathbf{s} = A E_{1x} = \frac{\rho}{\epsilon_{o}} = -\frac{e}{\epsilon_{o}} n_{o} (A \,\delta X)$

The electric field, $E_{1x} = -\frac{e}{\epsilon_o} n_o \, \delta X$ gives us an equation of motion for ions or electrons

$$\frac{d^2}{dt^2}(\delta X) + \left[\frac{e^2 n_o}{m_\alpha \epsilon_o}\right] \, (\delta X) = 0$$

that defines the electron/ion plasma frequencies,

$$lpha=e,i\qquad \omega_{plpha}=\sqrt{rac{e^2\,n_o}{m_lpha\,\epsilon_o}}$$

The plasma and coupling parameters, ...

In order to shield out the electric field perturbations a minimum number of charges are required inside a sphere of radius $\lambda_{D.}$ This defines the plasma parameter N_D for ions and electrons,

$$N_{De} = \frac{4\pi}{3} n_o \lambda_{De}^3 \qquad k_B T_e \gg k_B T_i \qquad \lambda_{De} \gg \lambda_{Di} \qquad N_{De} \gg N_{Di}$$

The plasma parameter is closely related with the coupling parameter $\Gamma_{\rm C}$ the ratio between thermal and electrostatic energies.

Coupling parameter, ...

For the coupling parameter we also have,

$$\Gamma_c^3 = \frac{1}{(4\pi)^3} \times \frac{1}{n_o^2} \times \left(\frac{n_o e^2}{\epsilon_o k_B T}\right)^3 = \frac{1}{(4\pi)^3} \frac{1}{n_o^2 \lambda_D^6} = \frac{1}{(4\pi \times 9)} \left(\frac{3}{4\pi n_o \lambda_D^3}\right)^2$$

and we obtain, $\Gamma_c = \frac{1}{36 \pi N_D^2}$ equivalent to, $\Gamma_C = \frac{e^2 n_o^{1/3}}{4\pi \epsilon_o k_B T}$

Description	Plasma parameter		
Limits	$\Gamma_{C} >> 1 (N_{D} << 1)$	$\Gamma_{c} >> 1 (N_{D} >> 1)$	
Coupling	Strongly coupled	Weakly coupled	
Debye sphere	Sparsely populated	Densely populated	
Electrostatic influence	Strong	Weak	
Characteristic	Cold and dense	Hot and diffuse	
Examples	Laser ablation plasmas Inertial fusion experiments White dwarfs Neutron stars	lonospheric plasmas Magnetic fusion experiments Space plasmas Electric discharge plasmas	

The plasma skin depth, ...

The magnetic field exponentially decreases in the plasma along the so called *skin depth* of *London characteristic length*

Magnetized plasmas: Larmor radius, ...

The force experienced by electric charges in this course (non-relativistic),

$$lpha = e, i$$
 $\mathbf{F}_{lpha} = q_{lpha} \, n_{lpha} \, \left(\mathbf{E} + \mathbf{v}_{lpha} \wedge \mathbf{B}
ight)$

this gives the cyclotron frequency, $\Omega_{lpha} = q_{lpha} \, B_{\perp} \, / \, m_{lpha}$ and using the perpendicular speed to the magnetic field lines we obtain the Larmor radius

 $r_{L,lpha} = rac{m_lpha \, v_\perp}{|q_lpha| \, B}$ a new length is defined using the particle thermal speed

$$R_{L,\alpha} = \frac{V_{th,\alpha}}{\Omega_{\alpha}}$$
$$R_{L,i} = \sqrt{\frac{m_i}{m_e}} R_{L,e}$$

$$R_{L,e} \ll R_{L,i} > L$$

Magnetized electrons and unmagnetized ions Magnetized electrons and ions

$$R_{L,e} \ll R_{L,i} < L$$

Orders of magnitude, ...

Low pressure discharges KT \approx I-3 eV, n \approx 10⁸ cm⁻³

Solar corona KT \approx 100 eV, n \approx 10⁹ cm⁻³

Fusion reactor KT $\approx 10^4$ eV, n $\approx 10^{15}$ cm⁻³

The Earth ionospheric plasma, ...

The black curves are for neutral particles and the red line is the altitude dependent electron density.

The sum of all different ion densities n_i equals the electron density n_e

The ions are produced by the absorption by the neutrals of parts of the solar radiation spectrum. The maximum rate takes place at the F_1 and F_2 peaks.