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Abstract

In this short review is introduced the elementary theory of collecting Langmuir probes

in spherical and cylindrical geometries. The classical results for either repelled and at-

tracted charges are deduced and the different approximations and limits of application

are discussed with special insight in laboratory and practical applications. The principles

and operation modes of emissive Langmuir probes are also discussed and also an updated

bibliography is provided for further reading.
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1 Introduction.

The Nobel laureate Irving Langmuir made outstanding contributions in different fields of
Physics during the past century. He coined the term plasma in relation to the physics of
partially ionized gases and also invented the Langmuir probes to measure the electron plasma
density ne, the space potential Vsp and the electron temperature KBTe in cold low density
plasmas.

These Langmuir probes are one of the different
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Figure 1: Collecting Langmuir probes
with radius rp and (a) spherical, (b)
cylindrical and (c) planar geometries.

electric probe diagnostics that are employed today. In
a broader sense, the electric probes measure the local
plasma parameters by using stationary or slow time
varying electric (and/or magnetic) fields to emit or
to collect charged particles from the plasma. These
measuring techniques constitute an active field of re-
search and are particularly well suited for low density
cold plasmas, as low pressure electric discharges, iono-
spheric and space plasmas.

The simplest collecting Langmuir probe is a metal-
lic electrode (as those of Fig. 1) with a well defined ge-
ometry (planar, cylindrical or spherical). The probe is
immersed into the plasma and polarized to the poten-
tial Vp by an external circuit. This bias to V = Vp−Vsp

the probe with respect to the local space plasma po-
tential Vsp. Then, the drained current Ip = I(Vp)
for different probe potentials Vp is monitored and the
plasma parameters are calculated from this voltage -

current (IV) characteristic curves.

However, behind this apparently simple scheme are hidden the intricate theoretical and
practical problems involved in the charge collection processes from a plasma.

The plasma parameters are deduced from the

Idis
VpIpbR

Vdis

Plasma
column P ions

electrons

Cathode Anode

A

Figure 2: Scheme of the of the circuit for
probe measurements in a glow discharge.

current Ip, which, in accordance to the bias volt-
age V = Vp − Vsp is composed of ions, electrons
or both. The attracted charges are collected by
through the electric field between the bulk plasma
and the metallic surface of the probe. This unde-
termined spatial potential profile extends in the
plasma along distances in the order of few Debye
lengths λD and is denominated plasma sheath. In
addition, this local electric field also may be al-
tered according to the magnitude of the current
Ip collected.

Therefore, the charge collection process de-
pends on different characteristic lengths, as the probe size rp and the thickness (or spatial
extension) of the plasma sheath attached to the collecting surface, which related with λD. In
magnetized plasmas the electron re and ion ri Larmor radius also introduce additional lengths,
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as well as the mean free paths λ for collisions between electrons and/or ions and neutral atoms
in collisional and weakly ionized plasmas.

The disparity between these magnitudes, that may differ by orders of magnitude for the
different plasmas in nature and/or in measuring systems, leads the theory of Langmuir probes
unfortunately incomplete. In fact, no general model is available relating the current voltage
curves I(Vp) with the actual plasma properties under all possible physical conditions.

For unmagnetized Maxwellian plasmas the simplified theory developed by Langmuir and
Harold M. Mott-Smith in 1926 allows under ideal conditions to determine the plasma potential
Vsp, electron temperature KBTe and density ne ≃ ni. The interpretation of the measurements
outside the narrow limits of this simplified theory is difficult and many points still remains
obscure.

The idealized situation where the simplified the-

Idis

Vdis

pV

Idc

Vdc

pI

P

Plasma

electrons

ions

Ip

Cathode
Anode

A

Figure 3: Scheme of the of the circuit
for probe measurements in a plasma
produced by thermionic emission of
electrons.

ory strictly applies is seldom found in the experiments
of interest. However, even in these situations where
different drifting populations of charged particles are
present or under intense magnetic fields the electric
probes may provide valuable information.

The reader will find these notes as incomplete be-
cause they only cover a limited number of topics on
Langmuir probe theory. The fundamentals are intro-
duced with a detailed deduction of the relevant ex-
pressions, however, they do not intend to replace the
excellent monographs and reviews existing in the lit-
erature [1, 2, 3, 5]. Our aim is to facilitate to our
students an starting point and more involved models
are left for further readings.

2 Qualitative description of collecting current voltage curves.

The Figs. 2 and 3 represents the two simplest measurement circuits using collecting Lang-
muir probes in experiments with cold weakly ionized plasmas. The first case is a glow dis-

charge plasma into a glass tube (or other gas evacuated vessel) with typical pressures between
10−2 − 102 mBar. The electric discharge is produced by applying a high DC voltage Vdis

(between 300-600 Volts or more) and the corresponding discharge current Idis is in the range
of 0.1 − 100 mA. The physical properties of the glow discharge and other electric discharges
are discussed in detail in Ref. [3].

In the scheme of Fig. 3 the wires heated up to red glow by a DC current Ih inside the
vacuum chamber to produce the thermoionic emission of electrons. These electrons are later
accelerated by a discharge voltage Vdis ∼ 20 − 80 Volts, over the first ionization potential of
the neutral gas, and cause the electron impact ionization of the neutral atoms remaining in
the vacuum chamber. In this case, the discharge current Idis may reach several amps and
additional permanent magnets (not shown in the picture) are frequently disposed around the
plasma chamber. This confines the electrons and enhance the local ionization.
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In both cases, the probe P is immersed at a given point within the plasma biased to the
electric potential Vp with respect to a reference electrode. The anode of the discharge is used
in Figs. 2 and 3. However the cathode or the grounded metallic wall of the plasma chamber
could also serve for reference electrode in other situations.

In the following, we will refer to a general probe as

A B

C

D

Vp (Volts)

Probe

current

Vp > VspVp < Vsp

Vp= Vsp

Ies= Ip(Vsp)

 Ip(VF) = 0

Vp= VF
Iis

Figure 4: An idealized IV curve of ob-
tained with a collecting Langmuir probe
in a cold plasma.

those of Fig. 1 with a characteristic length rp. We will
specify if the probe is either, spherical, cylindrical or
planar only when geometry dependent properties are
relevant.

The current-voltage curves (IV) are obtained by
measuring the drained current Ip by the probe for each
bias potential Vp and Fig. 4 represents an idealized
voltage current (IV) curve.

In order to give a qualitative interpretation we
will consider an idealized non equilibrium collision-
less, Maxwellian and unmagnetized plasma. Thus, the
collisional mean free paths of all particles are larger
than all characteristic lengths (λ ≫ rp, λD) and also

the electron temperature KBTe ≫ KBTi ≃ KBTa is higher than those of ions and neutrals.

The potential Vsp in Fig. 4 corresponds to the electric potential at the point of the plasma
where the probe is inserted. The collecting probe do not emit particles, and in accordance to
the potential Vp, the drained current Ip = Ii + Ie from the plasma is composed of an ion Ii
and electron Ie currents.

For very negative bias voltages Vp ≪ Vsp (at the

 r =  r p  r =  r s

P
o

te
n

ti
al

Ions

Electrons

pV

(r)

spV

r

bulk plasmaV

Plasma potential 

spatial profile

sheath

M
et

al
lic

 s
u

rf
ac

e

Figure 5: Radial potential profile at-
tached to an ion collecting metallic sur-
face.

left of point A in Fig.4) the electrons are repelled,
while ions are attracted by the probe. The drained
ion current from the plasma is limited by the electric
shielding of the probe and Ip decreases slowly for very
negative Vp ≪ Vsp. The current Ip ≃ Iis is denomi-
nated ion saturation current.

In the opposite limit (voltages at the right of point
C in Fig. 4) where Vp ≫ Vsp the ions are repelled and
the electrons are the attracted charges. In this case
the electrons are responsible for the electric shielding
of the probe and Ip ≃ Ies is called the electron satu-

ration current. The bias potential VF where Ip = 0
is the floating potential (point B) where the contribu-
tions of the ion and electron currents are equals.

The situation where Vp ≪ Vsp is shown in the scheme of Fig. 5 only an small number of
electrons have energy enough to jump the potential barrier of Vp. The ions are attracted to
the probe and a layer of negative space charge (negative sheath) develops for r < rs attached
to the metallic surface.

The potential drop from Vsp to Vp and the perturbation caused by the probe electric field
is concentrated within the space charge layer around the probe, decreases asymptotically in
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the transition to the unperturbed plasma. The Fig. 6 represents the opposite situation with
Vp ≫ Vsp where the attracted particles are electrons and again the negative sheath for r < rs
connects the space potential of the unperturbed bulk plasma with Vp.

This effect is quite similar to the plasma polariza-
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Figure 6: Radial potential profile at-
tached to an electron collecting metallic
surface.

tion around a point charge where the spatial fluctua-
tions of the plasma potential,

δVsp ∼ (1/r)× exp(−r/λD),

that exponentially decreases with the radial distance.
Thus, the thickness of the sheath in Figs. 5 and 6
and therefore, the perturbation over the distance rp
introduced in the plasma by the probe is restricted to
a few Debye lengths 1.

The vertical doted lines in Figs. 5 and 6 represents
the external surface of the sheath rs around the probe.
This boundary is not accurately determined and is the
limit beyond the plasma could be considered again

quasineutral and electric field free. The electrons (or ions) are brought from the bulk plasma to
this boundary mostly by thermal motion. This factor determines the flux of charged particles
crossing the radius rs > rp towards the probe.

Therefore, the attracted charges are collected over the surface defined by rs which could
not be precisely calculated without solving the Poisson equation to determine V (r). This will
be a key point for attracted particles which enter in the plasma sheath over a surface with an
undetermined radius rs > rp.

Figure 7: A cylindrical probe operating in a glow discharge plasma (left) and a closer view for large
posive bias (right). In weakly ionized plasmas, this glow is produced for Vp ≫ Vsp by the inelastic
collisions between neutral atoms and attracted electrons in the sheath.

The plasma sheath formed by attracted electrons can be visualized in a weakly ionized
plasma by the bright glow surrounding the cylindrical probe in Fig. 7. Because of the large
neutral gas atom density, the inelastic collisions of neutrals with the accelerated electrons in
the sheath produce the emission of light. The large electron currents heat the probe and this
fact is also used for probe surface cleaning.

1The structure of the ion sheath is discussed in detail in Sec. 8.2 pp. 290-295 of Ref. [4].
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On the contrary, the repelled charges with thermal energy enough to overcome the potential
barrier and to reach the probe are collected over its surface. The drained current Ip of attracted
particles (for either Vp ≫ Vsp and Vp ≪ Vsp) becomes therefore weakly dependent of Vp as
shown in Fig. 4. This saturation process by attracted particles is in the origin of the currents
Iis and Ies which are respectively the ion and electron saturation currents.

The electrons are repelled for probe bias

Collected
electrons

en (E)
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= eVp
> 0

Electron energy E

pE

E p

E
le

ct
ro

n
 d

en
si

ty

Figure 8: Electron collection process in the re-
tarding field region (curve BC) of Fig. 4.

Vp − Vsp < 0 below the local plasma poten-
tial. The Fig. 8 represents the fraction of
collected electron with energy enough to reach
the probe because of the finite electron tem-
perature KBTe of the Maxwellian energy dis-
tribution.

The number of electrons with energy,

E = −e(Vp − Vsp) ≥ 0

that reach the probe increases as the bias
Vp − Vsp with respect to the bulk plasma de-
creases. This fact explains the abrupt grow-

ing of Ip in Fig. 4 between B and C which is strongly dependent of Vp, contrary to the current
saturation processes (over point C and below B). This part of the IV curve is frequently
denominated electron retarding field because the probe bias Vp repels a fraction of electrons
from reaching the probe.

Finally, when Vp = Vsp no sheath develops around the probe and the charges reach its
surface because of their thermal motion. Thus, the probe collects the thermal flux of both
electrons Γe,Th and ions Γi,Th. In consequence, the probe biased at the space plasma potential
drains an electric current from the plasma even in the absence of potential difference between
the conductor and the surrounding plasma.

The thermal flux of electrons (α = e) and (α = e) ions is given by,

Γα,Th =
1

4
nα

(

8KBTe

πmα

)1/2

and their density currents are, Iα.Th = qα Γα,Th. Because, mi ≫ me 1 and KBTe ≫ KBTi on
practical grounds,

Ip = Ie,Th + Ii,Th = Ie,Th

(

1 +
Ie,Th

Ii,Th

)

≃ Ie,Th

and therefore, the current Ip(Vp) in Fig. 4 is equal to the electron thermal and saturation
currents Ip(Vp) ≃ Iet = Ies ≫ Iis.

The next step is to calculate the plasma parameters from the IV curve fitting obtained
in the experiments. This requires of physical models relating the drained current Ip with the
energy distribution functions of charged particles. Unfortunately, because of the wide range
of plasma densities, temperatures and characteristic lengths the results are quite unrealistic if
the wrong model is employed.
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3 The simplified theory for collisionless unmagnetized plasmas.

The simplest model relating the plasma properties with current voltage curves was formulated
by Langmuir and Mott-Smith and is valid for unmagnetized collisionless Maxwellian plasmas.
The following formulation of the theory essentially comes from Ref. [5] and these calculations
rely on some assumptions that apply to most of nonequilibrium laboratory plasmas.

1. The bulk plasma volume is considered as infinite, stationary, homogeneous
and quasineutral ne ≃ ni.

2. Electron and ions have Maxwellian distributions of velocities and the kinetic
temperature of the species are KBTe ≫ KBTi ≃ KBTa, where α = e, i, a
represents respectively electrons, ions and neutral atoms.

3. The collisional mean free paths of electrons λe and ions λi are larger than rp
and λD.

4. The charged particles that reach the surface of the probe do not chemically
react with the probe material, are always collected and contribute to the
probe current I(Vp).

5. The perturbation introduced by the probe in the plasma is confined to a space
charge sheath with a well defined boundary. Outside this sheath the space
potential is assumed uniform in the bulk plasma.

6. The sheath thickness d ≪ rp is small compared with the characteristic probe
dimension and therefore edge effects may be neglected.

7. The potential around the probe preserves the symmetry (spherical, cylindrical
or planar) and V (r) is a monotonically decreasing (or increasing) function
between the sheath edge and the probe surface.

First of all, we will consider the motion of a charge qα (α = e, i) of mass mα, located at the
radial distance r with initial speed v. This particle moves close to a cylindrical or spherical
probe and we will use in the following e = |e| > 0, then qe = −e for electrons and qi = +e for
ions.

The bulk plasma is considered as stationary and uniform in space (see previous points 1,
3 and 5) and the plasma potential takes an uniform value Vsp. For the a radial distance r the
electric potential with respect to this undisturbed plasma is φ(r) = V (r)− Vsp and the probe
potential is φp = V (rp)− Vsp.

It is of worth to recall that the plasma potential profile around the probe φ(r) = V (r)− Vsp

remains undetermined. The only requisite (see previous points 5, 6 and 7) for the sheath
potential φ(r) is to be a monotonic function decreasing or increasing fast enough close to the
probe surface as in Figs. 5 and 6.

Two different situations arise, the charge qα could be repelled by the retarding electric field

around the probe when qα φ(r) > 0. For electrons corresponds to the BC part of the IV curve
of Fig. 4). On the contrary, the particle may be also attracted by the accelerating field when
qα φ(r) < 0 (in Fig. 4 the parts AB for ions and CD for electrons).
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3.1 Spherical probe

In the case of the spherical probe, the motion of a single charge is restricted to a plane
defined by its velocity v and the plane of symmetry of the sphere. As in Fig. 9, the speed
v = v⊥ + v‖ has two components v‖ parallel and perpendicular v⊥ to the radial direction
er, normal to the probe surface. The charge that reaches the probe surface rp with speed
v

′

= v′
‖ + v′

⊥ comes from the radial distance r ≥ rp with the initial velocity v.

In the absence of collisions the energy of this

pr

er

V
V||

Vprobe

Figure 9: The scheme of the spherical probe
and the components of the charge velocity.

particle is conserved,

mα

2
(v2‖ + v2⊥) + qαVsp =

mα

2
(v′

2
‖ + v′

2
⊥) + qαVp

and also for the component of the angular mo-
mentum perpendicular to the plane of Figs. 9
and 10,

r v⊥ = rp v
′
⊥ and, v′⊥ =

r

rp
v⊥

Setting φp = Vp − Vsp we have,

V

VV||

pr

ereθ
ds

r

ϕ

ϕ

Figure 10: The velocity
v = v‖ + v⊥ of the charge
crossing the surface element dS
placed at the radial distance r.

v′
2
= v2‖ + v2⊥

(

1− r2

r2p

)

− 2 qα
mα

φp ≥ 0

In order to be collected v′ ≥ 0 and this relates the mag-
nitude of the angular v⊥ and radial v‖ components of the
velocity of collected charges,

v2⊥ ≤
v2‖ − 2qαφp/mα

(r/rp)2 − 1

As shown in Fig. 10 the components of the speed are,
v⊥ = v sin ϕ and v‖ = v cos ϕ,

v2 sin2 ϕ ≤ v2 cos2 ϕ− 2qαφp/mα

(r/rp)2 − 1

From this expression we obtain the maximum allowed angle
ϕm of the particle velocity v with the radial direction er
of Fig. 10 for the distance r,

sin2 ϕm ≤
r2p
r2

(

1− 2 qαφp

mαv2

)

=
r2p
r2

(

1− qαφp

E

)

(1)

This latter depends on the radial distance r to the probe and the ratio between the electrostatic
energy (qαφp) and the initial kinetic energy E of the incoming charge.

The key point of collecting Langmuir probe theory is to relate the energy spectrum of the
attracted or repelled particles with current drained by the probe. Therefore, in order to relate

9
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I(rp) with the plasma properties, instead of a monoenergetic charged particle, we consider a
velocity distribution function fα(v). Then, for each charged specie in the plasma,

dnα = nαo fα(v) dv

represents the number of particles by volume unit of the specie α with velocities between v

and v + dv. The above distribution function fα(v) is normalized to,

∫ +∞

−∞
fα(v) d

3v = 1

and nαo represents the density of particles of the specie α in the undisturbed bulk plasma.

3.1.1 Repelled particles

For repelled particles qαφp > 0 and positive values of Eq. (1) require the kinetic energy of
charges E ≥ qα φp, also r ≥ rp for sin2 ϕ ≤ 1. Therefore, the probe collects over its surface
only the repelled particles with energy enough to overcome the potential barrier.

Because of the symmetry, the current density dj(r) over dS in Figs. 10 and 11 of charges
attracted or repelled by the spherical is parallel fo er and,

(dj)‖ = dj = qα v‖ dnα

The details of the integration over the surface dS are in Fig. 11, and using dv = v2 sinϕdθ dϕdv
we have,

dj = (qαnαo) (v cosϕ) v2 sinϕfα(v) dv dθ dϕ (2)

Now, we make an important assumption: the velocity distribution function is isotropic, only
depends of the energy of particles, fα(v) = fα(|v|), we obtain,

j(r) = (qαnαo)

∫ ∞

vm

v3fα(v) dv

∫ 2π

0
dθ

∫ ϕm

0
sinϕ cosϕdϕ

For repelled charges (qαφp > 0) a minimum initial energy (or speed) mv2m/2 ≥ qα φp is
necessary to overcome the potential barrier around the probe. Therefore,

j(r) = (qαnαo)π

∫ ∞

vm

v3fα(v) sin
2 ϕm dv

and sinϕm is eliminated by using Eq. (1),

j(r) = (qαnαo)π

(

r2p
r2

)

∫ ∞

√
2qαφp/mα

v3fα(v)

(

1− 2qαφp

mαv2

)

dv (3)

This last expression only depends on the particle velocity v and decreases with the radial
distance. In the absence of ionizations and charge losses for r ≥ rp for particles with v ≥ vm
the probe current is, I(r) = I(rp) and I(rp) = (4πr2) j(r) and finally we have,
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I(rp) = (qαnαo)π Asph

∫ ∞

√
2 qαφp/mα

v3fα(v)

(

1− 2 qαφp

mαv2

)

dv (4)

where Asph = 4πr2p is the area of the spherical probe.

The Eqs. (3) and (4) are usually are made dimensionless using the thermal speed,

c =

√

2KBTα

mα

where KBTα is the kinetic temperature of the specie α. The

er

mϕ−

V||

mϕ+

ds

θ

Figure 11: The angles con-
sidered over a surface element
dS in Eq.(2).

scaled velocity is û = v/c and ûm =
√

φ̂p with φ̂p = qφp/KBTα.
This dimensionless probe potential compares the electrostatic
(eφp) and thermal (KBTα) energies of particles. Thus,

j(r) = (qαnαo)π c4

(

r2p
r2

)

∫ ∞

√
φ̂p

û3fα(û)

(

1− φ̂p

û2

)

dû (5)

The above integrals could be evaluated for the particular
case of the Maxwell Boltzmann velocity distribution function,

f(û) =
1

π3/2 c3
e−û2

(6)

Using,
∫ ∞

ûm

û3 e−û2

(

1− û2m
û2

)

dû =
e−û2

m

2

we obtain a simple expression for the current of repelled particles,

j(r) =
qα nαo

4
Vth exp

(

qα (Vsp − Vp)

KBTα

)

(7)

where Vth = (8KBTα/πmα)
1/2 and also,

I(rp) =
qα nαoAsph

4
Vth exp

(

qα (Vsp − Vp)

KBTα

)

(8)

This exponential growth of the current is in accordance with the expected response for electrons
of the ideal probe along the segment BC in Fig. 4. When the probe is biased at the local
plasma potential (Vp = Vsp or φp = 0) the current collected is the random flux of charges to
its surface,

I(Vp) =
qα nαo Asph

4
Vth (9)

11
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3.1.2 Attracted particles

For attracted charges setting qαφp = −|qαφp| < 0 in Eq. (1),

sin2 ϕm ≤
r2p
r2

(

1 +
2 |qαφp|
mαv2

)

=
r2p
r2

(

1 +
|qαφp|
E

)

(10)

Thus, the behavior of the particle orbits depend on whether the initial particle velocities are
smaller or larger that a certain velocity vs defined by the radial distance,

rs = rp

√

1 +
|qαφp|
E

which is rs > rp for E > 0. For a fixed (and at this point undetermined) value of rs the speed
vs from Eq. (10) is,

v2s =
2 |qαφp|

mα(r2s/r
2
p − 1)

that defines the energy Es = mαv
2
s/2 leading sinϕm = 1 in Eq. (10).

The radial distance rs, that could be identified with the sheath threshold of Figs. 5 and
6, and cannot be precisely determined at this point without solving the Poisson equation to
determine the plasma potential profile φ(r) around the probe.

Therefore, for r = rs the particles with E ≤ Es are collected because the Eq. (10) is always
satisfied. The radial distance rs plays the role of threshold radius for the particle orbits and
the motion of the charges to the probe is said sheath limited. For v > vs and r = rs only those
particles with sin2 ϕ ≤ 1 are collected while others orbit or their trajectories bend around the
probe. The motion of the charges is said to be orbit limited.

For accelerated particles the current density dj‖(r) going into dS in Figs. 10 and 11 is
composed of two terms, dj(rs) = djsl(rs) + djol(rs) according to the velocity of the incoming
charges with,

jsl(rs) = (qαnαo)

∫ vs

0
v3fα(v) dv

∫ 2π

0
dθ

∫ π

0
sinϕ cosϕdϕ

also,

jol(rs) = (qαnαo)

∫ ∞

vs

v3fα(v) dv

∫ 2π

0
dθ

∫ ϕm

0
sinϕ cosϕdϕ

After the integration and using Eq. (10) for sin2ϕm we have,

j(rs) = (qαnαo)π

[

∫ vs

0
v3fα(v) dv +

(

r2p
r2s

)

∫ ∞

vs

v3fα(v)

(

1 +
2 |qαφp|
mαv2

)

dv

]

(11)

As before, the probe current is I(rp) = 4πr2s j(rs) and then,

I(rp) = (qαnαo)π

[

(4πr2s)

∫ vs

0
v3fα(v) dv + (4πr2p)

∫ ∞

vs

v3fα(v)

(

1 +
2 |qαφp|
mαv2

)

dv

]

(12)

12
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Now, in order to calculate the final result for particular case of the Maxwell Boltzmann
distribution (Eq. 6) we introduce the equivalent dimensionless expression to Eq. (11),

j(rs) = (qαnαo)π c4
1

π3/2 c3

[

∫ ûs

0
û3fα(û) dû +

(

r2p
r2s

)

∫ ∞

ûs

û3fα(û)

(

1 +
|φ̂p|
û2

)

dû

]

where ûs = vs/c. Then,

j(rs) = (qαnαo)
c√
π

[

∫ ûs

0
û3 e−û2

dû +

(

r2p
r2s

)

∫ ∞

ûs

û3e−û2

(

1 +
|φ̂p|
û2

)

dû

]

and using the integrals,

∫ ûs

0
û3 e−û2

dû =
1

2

[

1− e−û2
s (1 + û2s)

]

∫ ∞

ûs

û3 e−û2

(

1 +
|φ̂p|
û2

)

dû =
e−û2

s

2

[

1 + û2s + |φ̂p|
]

this leads to,

j(rs) = (qαnαo)
c

2
√
π

[

1 + e−û2
s

(

(
r2p
r2s

− 1) + û2s (
r2p
r2s

− 1) +
r2p
r2s

|φ̂p|
)]

The final expression is,

j(rs) = (qαnαo)
c

2
√
π

[

1 + (
r2p
r2s

− 1)e−û2
s

]

(13)

and the collected current coincides with the Eq. (29) of Ref. [5],

I(rp) =
Asph

4
(qαnαo)Vth

r2s
r2p

[

1− (1−
r2p
r2s

) exp

(

−
r2p

r2s − r2p

|qαφp|
KBTα

)]

(14)

3.2 Cylindrical probe

The scheme with the motion of particles in the cylindrical geometry is represented in Fig. 12
where we assume the probe with a length L ≫ rp much larger than its radius. As for the
spherical probe, the velocity at rp is v′ and v at the radial distance r > rp. The speed vz
along the Z axis is constant and the Fig. 10 also applies for the component v⊥ = vr + vθ in
the plane P perpendicular to the probe axis with v‖ ≡ v (compare with Fig.12). Therefore,

mα

2
(v2r + v2θ + v2z)− qαφp =

mα

2
(v′

2
r + v′

2
θ + v2z)

13
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The component Lz of the angular momentum is conserved,

L = r ∧ v⊥ , r vθ = rp v
′
θ and v′θ =

r

rp
vθ

and again we deduce a relation between the radial vr and angular vθ components in the plane
P

er

Vz

Vr

Vθ
V

pr
V

probe

L

P

Figure 12: The geometry for the cylin-
drical probe.

v2r − qα φp/mα

(r2/r2p − 1)
≥ v2θ

As for the spherical probe in Fig. 10 we have, vθ =
v⊥ sinϕ and vr = v⊥ cosϕ,

sin2 ϕm ≤
r2p
r2

(

1− 2 qαφp

mαv
2
⊥

)

(15)

This is the equivalent condition to Eq. (1) but only
involves the component of the velocity v⊥ in the plane

P instead of v =
√

v2⊥ + v2z as for the spherical probe. Again, two different situations arise

for attracted and repelled particles.

3.2.1 Repelled particles

For repelled charges (qα φp > 0) in Eq. (15) the particles require of a minumum speed
v⊥m =

√

2 qαφp/mα to reach the radial distance rp. In addition, the maximum allowed value
for ϕ is,

sinϕm = ±rp
r

√

1− 2 qαφp

mαv
2
⊥

The current density over the surface element dS of Fig. 10 in the direction of the cylindrical
probe is again,

dj(r) = qα vr dnα = (qαnαo) (v⊥ cosϕ) fα(v) dv

with dv = dv⊥ dvz therefore dv = v⊥ dϕ dv⊥ dvz. Now, assuming again that the normalized
energy distribution function is isotropic and that could be written as fα(v) = fα⊥(v⊥) fαz(vz)
the current density becomes,

dj(r) = (qαnαo)

∫ ∞

v⊥

v2⊥ f⊥α(v⊥) dv⊥

∫ +ϕm

−ϕm

cosϕ dϕ

∫ +∞

−∞
fαz(vz) dvz

After the integration and using Eq. (15) we obtain,

j(r) = 2 (qαnαo)
rp
r

∫ ∞

v⊥m

v2⊥

√

1− 2 qαφp

mαv2⊥
f⊥α(v⊥) dv⊥ (16)

and the collected current is calculated as I(rp) = (2πrL) j(r).

14
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I(rp) = 2Acyl (qαnαo)

∫ ∞

v⊥m

v2⊥

√

1− 2 qαφp

mαv
2
⊥

f⊥α(v⊥) dv⊥ (17)

where Acyl = 2πrpL is the surface of the probe.

For the particular case of the Maxwell Boltzmann

V

er
Vr

Vz

pr

ϕL

r

dS

probe
P

Figure 13: The velocity v = v⊥ + vz
of a charge over the surface element ds
placed at the radial distance r.

distribution (Eq. 6) using the dimensionless velocity
û = v⊥/c as before,

j(r) = 2 (qαnαo)
rp
r

∫ ∞

ûm

û2 e−û2

√

1− φ̂p

û2
dû

and in this case,

∫ ∞

ûm

û2 e−û2

√

1− φ̂p

û2
dû =

√
π

4
e−û2

m

The final values for the current density at the radial
distance r is,

j(r) =
rp
r

(qαnαo)Vth

4
exp

(

φ̂p

)

=
rp
r

(qαnαo)Vth

4
exp

(

qαφp

KBTα

)

(18)

and the current collected by the probe is,

I(rp) =
(qαnαo)Vth Acyl

4
exp

(

qα(Vp − Vsp)

KBTα

)

(19)

Thus, for a Maxwellian plasma the current of repelled particle for spherical and cylindrical
probes only differ by a geometrical factor, Asph or Acyl. Again, when the probe is biased to
the plasma potential φp = 0 and collects the thermal flow of particles,

I(Vp) =
(qαnαo)Acyl

4
Vth

3.2.2 Attracted particles

For attracted charges qα φp < 0 and the Eq. (15) becomes,

sin2 ϕ =
r2p
r2

(

1 +
2 |qαφp|
mαv2⊥

)

(20)

which defines the radial distance rs > rp and the critical speed v⊥s. According to the velocity
of the attracted charges, as for the spherical probe, the radial component of the current density
at the distance rs is the sum dj(rs) = djsl(rs)+djol(rs) of the sheath limited and orbit limited
parts . In this case using vr = v⊥ cosϕ and,

(dj)r = dj(rc) = qα vr dnα = (qαnαo) (v⊥ cosϕ)fα(v) dv

15
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Assuming an anisotropic velocity distribution function, with the details of the integration as
indicated in Fig. 13,

jsl(rs) = (qαnαo)

∫ v⊥s

0
v2⊥fα⊥(v⊥) dv⊥

∫ π

−π
cosϕdϕ

∫ +∞

−∞
fαz(vz) dvz (21)

and,

jol(rs) = (qαnαo)

∫ ∞

v⊥s

v2⊥fα⊥(v⊥) dv⊥

∫ ϕm

−ϕm

cosϕdϕ

∫ +∞

−∞
fαz(vz) dvz

Using the Eq. (20) the integration leads to,

j(rs) = 2 (qαnαo)

∫ v⊥s

0
v2⊥fα⊥(v⊥) dv⊥ +(qαnαo)

rp
rs

∫ ∞

v⊥s

v2⊥

√

1 +
2 |qαφp|
mαv

2
⊥

fα⊥(v⊥) dv⊥ (22)

The corresponding current is I(rp) = (2π rs L) j(rs). Because of the cylindrical symmetry,
this last equation involves the two dimensional velocity distribution function fα⊥(v⊥). The
dimensionless Eq. (22) with û = v⊥/c is,

j(rs) = (qαnαo)
2 c

π



2

∫ ûs

0
û2fα⊥(û) dû +

rp
rs

∫ ∞

ûs

û2 fα⊥(û)

√

1 +
|φ̂p|
û2

dû





and for the particular case of the two dimensional Maxwell Boltzmann distribution,

f2d(û) =
2

π c
e−û2

we obtain,

j(rs) = (qαnαo)
2c

π





∫ ûs

0
û2e−u2

dû +
rp
rs

∫ ∞

ûs

û2 e−û2

√

1 +
|φ̂p|
û2

dû





The values of these integrals are,

∫ ûs

0
û2e−u2

dû =
1

4

[

−2 ûs e
−û2

s +
√
π Erf(ûs)

]

∫ ∞

ûs

û2 e−u2

√

1 +
|φ̂p|
û2

dû =
e−û2

2

√

u2s + |φ̂p|+
√
π

4
e|φ̂p| Erfc(

√

u2s + |φ̂p| )

where Erf(x) and Erfc(x) are the error and the complementary error functions. After some
manipulations we obtain,

j(rs) =
1

4
(qαnαo)Vth

[

Erf(ûs) +
rp
r
e|φ̂p| Erfc(

√

û2s + |φ̂p| )
]

(23)

and also for the current I(rp) = (2φ rs L) j(rs),

I(rp) =
Acyl

4
(qαnαo)Vth

[

rs
rp

Erf(ûs) + e|φ̂p| Erfc(

√

û2s + |φ̂p| )
]

(24)
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3.3 Approximations

For the particular case of the Maxwell Boltzmann velocity distribution the the results (Eqs. (7)
and (18)) are equivalent and independent of the geometry of the probe for repelled particles.
On the contrary, for attracted charges are different the Eqs. (13) for the spherical probe and
Eqs.(23) for the cylindrical geometry 2.

In addition, the above results for accelerating fields contains the radial distance rs that
could be identified with the sheath edge. This distance would mark the threshold between
the bulk unperturbed plasma and the plasma sheath, as indicated in Figs. 5 and 6. In fact,
such radius is undetermined as well as the plasma potential drop φ(r) around the probe. This
calculation is complex and involves Poisson equation for the electric field around the probe,
which is also influenced by the local spatial charge distribution in the sheath.

Therefore, some approximations are required to eliminate rs from the above expressions
for attracted particles. They compare the probe radius rp with the radial distance rs of the
sheath limit. The thin sheath approximation corresponds to rs − rp ≫ rp while in the thick

sheath limit rs ≫ rp.

3.3.1 The thin sheath limit

In this case the normalized speed,

û2c = |φ̂p|
r2p

r2s − r2p

is large in the limit rs − rp ≫ rp. Thus, writing Ies = Asph (qαnαoVth)/4 the Eq. 14 reads,

I(rp) = Ies
r2s
r2p

[

1− (1−
r2p
r2s

)e−û2
c

]

and using exp(−û2c) ≃ 1 we obtain,

I(rp) ≃ Ies
r2s
r2p

(

1− 1 +
r2p
r2s

)

= Ies

Therefore, the current of attracted particles for an spherical probe in the thin sheath limit is
constant for bias voltages Vp ≫ Vsp.

For the cylindrical probe, with Ies = Acyl (qαnαoVth)/4 the Eq. 24 reads,

I(rp) = Ies

[

rs
rp

Erf(ûc) + e|φ̂p| Erfc(

√

û2c + |φ̂p| )
]

= Ies F ( ûc, |φ̂p|)

and in the limit rs − rp ≫ rp we may use of,

Erfc(x) = 1− Erf(x) ≃ 1√
π

e−x2

x

2These expressions corresponds to Eqs. (29) and (30) in Ref. [5] and (43-49) in Ref. [7].
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for large values of x. Thus, the function F ( ûc, |φ̂p|) can be approximated by,

F ( ûc, |φ̂p|) ≃
rs
rp

(1− 1√
π

e−û2

û
) +

e|φ̂p|

√
π

e−û2

e−|φ̂p|

√

û2c + |φ̂p|

And we have,

û2c + |φ̂p| = |φ̂p|
r2p

r2s − r2p
+ |φ̂p| =

r2s
r2p

û2c

After some simple manipulations we obtain,

F ( ûc, |φ̂p|) ≃
rs
rp

(

1− 1√
π

r2p
r2s − r2p

r2p
e−û2

û

)

≃ rs
rp

∼ 1

Therefore, in the thin sheath limit the current of attracted charges collected by both, the cylin-
drical and spherical probes I = Ies is equal to the electron saturation current and independent
of the probe bias for Vp ≫ VSp.

3.3.2 The thick sheath limit

For the spherical probe when rs/rp ≫ 1 we approximate,

exp (−û2c) = exp

[

−|φ̂p|
1

r2s/r
2
p − 1

]

≃ exp

(

−|φ̂p|
r2p
r2s

)

∼ 1− |φ̂p|
r2p
r2s

and in Eq. (14) we have,

I(rp) ≃
Asph

4
(qα nαo)Vth

[

r2s
r2p

− r2s
r2p

(

1−
r2p
r2s

) (

1−
r2p
r2s

|φ̂p|
)]

Writing Ies = (Asph qα nαo Vth)/4 we obtain,

I(rp) ≃ Ies

(

1 + |φ̂p| −
r2p
r2s

|φ̂p|
)

Finally, neglecting the small term,

I(rp) ≃ Ies (1 +
|qαφp|
KBTα

) (25)

In the thick sheath limit the collected current of attracted particles for the spherical probe
grows linearly with the bias potential Vp ≫ Vsp.

In the case of the cylindrical geometry,

F ( ûc, |φ̂p|) =
rs
rp

Erf(ûc) + e|φ̂p| Erfc (
rs
rp

ûc)

18
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and because rs ≫ rp for low values of ûc we make use of Erf(x) ≃ (2x)/
√
π,

F ( ûc, |φ̂p|) ≃
rs
rp

2√
π
ûc + e|φ̂p| Erfc (

rs
rp

ûc)

After some simple manipulations we obtain,

F ( ûc, |φ̂p|) ≃
2√
π

√

φ̂p + e|φ̂p| Erfc (

√

φ̂p)

On the contrary, the argument of Erfc (
√

φ̂p) ≃ Erfc (rsûc/rp) is large and we could make use
of the previous approximation. Then,

F ( ûc, |φ̂p|) ≃
2√
π
(

√

φ̂p +
1

2

1
√

φ̂p

) ∼ 2√
π
(1 + |φ̂p|)1/2

The final expression for the cylindrical probe is,

I(rp) = Ies
2√
π
(1 +

|qαφp|
KBTα

)1/2 (26)

For Maxwellian plasmas where the thick sheath approximation is valid, the Eqs. (25) and
(26) suggest that KBTα could be determined by plotting Ip (or I2p) aganist φp = Vp − Vsp.
The density unperturbed density nαo also may be determined from the value of Ise.
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Figure 14: Comparison of the thick sheath approximation for spherical and cylindrical probes in
(a) linear and in (b) logarithmic axis for an Argon plasma. The electron temperature is KBTe = 3
eV and the ion temperature KBTi = 0.013 eV (equivalent to the room temperature of 300 K ).
The plasma potential is Vsp = 6 V, (φsp = 2 V with φsp = e Vsp/KBTe).
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The results of the thick sheath approximation for a typical plasma are represented in Fig.
14 and have a similar look to the idealized current voltage curve of Fig. 4. The curves also
compare the Eq. (25) for spherical and Eq. (26) for cylindrical geometries. In the electron
saturation region (CD in Fig. 4 where Vp > Vsp) the current is geometry dependent while
this is not the case for repelled electrons (AC in Fig. 4 where V < Vsp). This fact is caused
by the low temperatures and large mass of ions that increase for Vp < Vsp the ion saturation
current less than Ise for V > Vsp.

We conclude that the equations (25) and (26) lead to an important result. When the thick

sheath approximation is valid in Maxwellian plasmas, the repelled particle temperature KBTα

could be determined by plotting Ip (or I2p) against φp = Vp − Vsp. Once KBTα is obtained,
the plasma density nαo may be determined from the value of Ies = A (qα nα)VTh/4.

However, as we shall see the validity of this approximation is limited when compared with
actual experimental data (see Fig. 16 and the discussion in Sec. 4.1). In this thick sheath

approximation the electric field around the probe remains undetermined because the Poisson
equation has been ignored. Thus, more involved models are required to account for the orbital
motion of attracted charges.

3.4 The energy distribution function of repelled particles

Finally, without making assumptions regarding the energy distribution function g(E) and
important result is deduced from Eqs. (4) and (17) for both geometries. [2, 9]. Deriving with
respect of the lower limit of the integrals,

I(α) =

∫ b

a
f(x, α) dx

we have,

dI

dα
= f(b, α)

db

dα
− f(a, α)

da

dα
+

∫ b

a

∂f(x, α)

∂x
dx

From Eq. (4) for the spherical probe we obtain,

I(rp) =
Asph qα

4

∫ ∞

qαφp

(1 +
qαφp

E
) g(E)

√

2E

mα
dE

Therefore,

d2I

dφ2
p

= 0− 0 +

∫ ∞

qαφp

q2απr
2
p

E
(1 +

qαφp

E
) g(E)

√

2E

mα
dE

and,

d2I

dφ2
p

= −(q2απr
2
p) g(E)

√

2qα
mαφp

We conclude distribution energy for repelled particles can be calculated from the second dif-
ferential of the current with respect to the bias voltage,
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g(E) = − 1

(q2απr
2
p)

√

mαφp

2qα

(

d2I

dφ2
p

)

This result is valid for any geometry as far as the velocity distribution is isotropic. Then,
even for non Maxwellian plasmas, the distribution function of repelled particles g(E) can be
obtained from the experimental data. While this result is valid for any kind of repelled charge,
in of particular interest for the electrons.

However High noise of the initial curve makes it very difficult to obtain the second differ-
ential of the current with respect to the bias voltage.

4 Interpretation of Langmuir probe data for repelling electrons

The above simplified theory considers an isotropic equilibrium plasma where none privileged
direction for the particle speed exists. This is not the case for a large number of situations
of physical interest where the probe and/or the plasma are in relative motion. However, the
above theory only applies as far as the drift velocity of the plasma is low compared with the
thermal speed of charges. This is also a common situations in low pressure discharge plasmas.

However, even when the energy distribution function is non Maxwellian, some important
information could be obtained using collecting Langmuir probes. As we have seen, the repelled
charges are collected over the surface S of the probe and Eq. (5) for the spherical and Eq.
(16) for cylindrical geometry are valid for any isotropic velocity distribution function fα(û).

In general, the repelled charge current of the specie α may be directly connected with fα(û),
this is of relevance for the repelled electrons. The electrons are mainly concerned because of
the lower ion temperature, that leads the repelled ion currents to be one or two orders of
magnitude much smaller than the electron currents in most experiments [2].

4.1 The analysis of experimental results

The classical analysis of the IV curves of collecting Langmuir curves is simple and based in
the fact that Eqs. (8) and (19) are geometry independent. This calculation has been subject
of a large number of refinements but its basic scheme has not been changed since the early
work of Irvin Langmuir.

The first step is to subtract to all experimental data the value of the ion saturation current.
This moves upwards the curve leading all currents positive. However, this value is frequently
so small that this correction becomes negligible as for the experimental data shown in Fig.
[15]. For low temperature plasmas where Ti ≪ Te the ion saturation current is approximated
close to the floating potential by the Bohm relation [4],

Iis = IBohm = 0.6ni e S

√

KBTe

mi

The factor 0.6 = e−1/2 comes from the approximation of the plasma potential Vsp ≃
KBTe/2 at the end of the presheath [4].
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This expression comes from the fact that a positive space charge sheath can form only if the
ion density is higher than the electron density at the sheath edge [4]. Furthermore, if the ion
density shall decrease slower than the electron density the ions must approach the sheath with
a speed exceeding the Bohm velocity [4],

vB =

√

KBTe

mi

To achieve this speed, an energy corresponding to a potential drop of KBTe/2e before the
plasma sheath is necessary. This accelerates the ions to speeds over the ion sound speed given
by cis =

√

KBTe/mi.
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Figure 15: The graphical analysis of actual experimental current voltage curves of collecting
Langmuir probes. These measurements could be compared with the theoretical predictions of Fig.
[14].

Next, the electron temperature KBTe is determined from the slope m of the exponential
growth of the repelled electron current by least squares fitting of the experimental data as
shown in Fig. [15].

The electron saturation current Ise is also estimated from the upper straight line corre-
sponding to the fitting of the saturation current. The intersection of these two lines determines
the plasma potential Vsp at the rounded knee of the curve. Finally, from Eqs. (9) and (19)
the electron plasma density could be also calculated.

The sharp knee at the plasma potential and the flat ion and electron saturation curves in
Fig. [4] are ideal probe features that are rarely seen in practice. The actual experimental data
in Fig. [15] the real behavior with a rounded edge. In addition, with increasing bias voltage
the ion and electron saturation curves also increments.

The rounded knee of Fig. [15] leads to imprecise determinations of the plasma parameters,
in particular, the value of the plasma potential. This behavior is not theoretically predicted
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in Fig. [14] for the thick sheath approximation where the effect of the local electric field is
neglected. This suggests that the sheath formed around the probe would be responsible for
this behavior.

Because of the electric imperfect probe shielding of electrons close to Vsp, the expansion
of the plasma sheath is the more accepted explanation for this round off observed in Fig. 15
[1, 2].

However, this point is unclear, the plasma sheaths around the probe are small in weakly
ionized plasmas with densities in the order of ∼ 108 cm−3 and Te ≈ 2 eV. The typical sheath
thickness, in the order of the Debye length, are smaller than 0.1 mm [8], orders of magnitude
below the typical size of the probe. Thus, the expansion of the sheath would produce a
negligible increase in the collected current compared with those observed in the experiments.

On the contrary, for lower plasma densities and smaller probes the sheath expansion in-
creases the collected current because the effective area for particles collection is the sheath
and not the geometric probe area. Consequently, when the probe dimensions are comparable
to the sheath thickness, the probe geometry has a larger influence on the IV characteristics.

This dependence of the current collected with the relative weight of each characteristic
lengths (Debye length vs. probe size) and the actual extension of the perturbation introduced
in the plasma (plasma sheath) remains as an open question.
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Figure 16: Comparison of the above graphical analysis with the thick sheath approximation for
measurements using cylindrical probes.

Finally, the expressions obtained using the thick sheath approximation are compared in
Fig. 16 with the values obtained from the graphical analysis of data in Fig. 15.

5 Emissive Langmuir probes

As discussed before, the plasma potential is determined from the IV curves of collecting
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probes by the crossing point of two fitting lines. This method is prone to errors because of
the round knee found in actual IV curves, as well as the noise observed for low values of the
drained current in low density plasmas [3, 2]. The emissive probes are intended to provide
reliable measurements of the plasma potential.

The emissive Langmuir probes are made of a thin
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Figure 17: Scheme of the basic electri-
cal connections of an emissive probe.

wire immersed in the plasma and heated up by a DC
or AC currents. This heated filament is biased as a
collecting probe as shown in the scheme of Fig. 17.

The current Ih heats the wire up to red glow within
temperature range of 1700-2000 K as in Fig. 18. This
produces the thermal emission of an electron current
given by the Schotty-Richardson formula [3, 2],

je,Th = C Tw
2 exp

(

− eWf

KBTw

)

and, Iem = S×je,Th

(26)

where S is the surface of the wire, Tw is the filament
temperature, Wf the work function of the metal and
the constant C = 6.02 × 105 A/m2K2. This emitted
electron current essentially depends on the tempera-
ture Tw of the filament.

Therefore, when the probe is biased more positive than the local plasma potential Vp > Vsp

the emitted electrons are reflected back to the probe. On the contrary, if the bias potential is
negative with respect to the surroundings Vp > Vsp the electrons can escape to the plasma and
appear as an effective ion current. The interpretation of emissive probe data is based on the
separation of the hot and cold IV traces that occurs near the plasma potential. This electron
emission process is not sensitive to the plasma flow because only depends on the local plasma
potential, rather than the electron kinetic energy. However, emissive probes do not provide
useful data on plasma density and temperature as collecting probes.

Although emissive probes have been investigated for a long time there still remain many
controversial issues regarding the emitted electron current and the space charge effects. In
accordance to the magnitude of the current given by Eq. (5) the emissive probes operate in
two different regimes. The strong emission regime (Ie,Th/Ies > 1) occurs when the thermal
electron current is higher than the electron saturation current Ies collected by the cold probe.
In this case charge space effects around the wire are important while could be neglected in
the opposite weakly emission limit (Ie,Th/Ise < 1).

5.1 Floating emissive probe

For probes operating in the low emission mode, the current Ihw from a heated wire could be
written as [2, 11],

Ihw =















−(Iem + Isi) Vp ≤ Vsp

−IemG (Vp − Vsp) exp

[

−e (Vp − Vsp)

KBTw

]

Vp > Vsp

24



Eur. Master NFEP: Laboratory Project. An introduction to Langmuir probes.

Figure 18: The picture and scheme of an emissive probe (left) and this probe operating in a glow
discharge plasma (right).

Here, Iem is the electron thermal current of Eq. (5) and Iis the ion saturation current. The
electron thermal emission depends on the temperature of the wire Tw and is considered as
constant for Vp ≤ Vsp and decreasing for Vp > Vsp. The same filament for low Tw, acting as a
cylindrical cold probe collects the current Icw also approximated by,

Icw =















IesG
′ (Vp − Vsp) Vp ≥ Vsp

Ise exp

[

e (Vp − Vsp)

KBTe

]

Vp < Vsp

where Ise is the electron saturation current. The factors G′ (Vp − Vsp) and G (Vp − Vsp)
account for the orbital motion of electrons and could be approximated [2] using the thick

sheath model of Eq. (26).

The heated probe combines the emission and collection processes and the total collected
current is I(Vp) = Icw + Ihw, and writing φp = (Vp − Vsp) for φp < 0 we obtain,

Ip(φp) = Ise e
(eφp/KBTe) − (Iem + Isi)

The first term is the exponential increase of the electron current when Vp approaches Vsp,
which is reduced by a constant negative electron emission current. For the floating potential
I(VF ) = 0 of the probe,

Ise e
(e φF /KBTe) = Iem + Isi

taking the logarithm in both sides,

ln

(

Iem + Isi

Ise

)

=
e φF

KBTe

Finally, we obtain,
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Vsp = VF − KBTe

e
ln

(

Iem + Isi
Ise

)

In the weak emission regime Iem + Isi < Ise and
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Figure 19: Symmetric emissive probe
circuit.

ln(Iem + Isi/Ies) < 1 and finally,

Vsp = VF +
KBTe

e
ln

(

Ise
Iem + Isi

)

> VF (26)

This last equation permits to determine Vsp using the
floating potential of the emissive probe. The emission
current Iem increases with the temperature of the wire
(Eq. (5)) when Iem ≃ Ise the logarithm in Eq. (5.1)
is very small and Vsp ≃ VF . Therefore the potential of a floating emissive probe is very close
to the value of the plasma potential.

There is an inevitable voltage drop ∆V along the hot wire which limits the accuracy of
the measurements of Vsp. The circuit of Fig. 19 is employed to improve the readings biasing
the point P . The signal from the probe is connected to the same point in the scheme of Fig.
17.

5.2 The inflection point method

Procedures which involve significant electron emission, such as the floating potential method,
perturbs the local surrounding of the probe. This is of particular concern in low density
plasmas where the emitted electron current may perturb the local electron density.

Ref. [11] introduces the inflection point method to determine the plasma potential more
accurately. Because this is an quite sophisticated technique, which involves the numerical
differentiation of the experimental data it will not be considered in this work.

The principal idea of the inflection point technique is to follow the inflection point of the
IV characteristics as the emission is decreased down to the point of zero emission. When
space charge effects can be neglected, the inflection point corresponds to the plasma potential.
Therefore, the inflection point is determined by the derivative dI/dVb. There, where the slope
of the curve changes the inflection point can be found.

The total probe current Ip for Vp ≤ Vsp is,

Ip = Ise exp

[

e (Vp − Vsp)

KBTe

]

− (Iem + Iis)

and for Vp > Vsp,

Ip = Ise

[

1 +
e (Vp − Vsp)

KBTe

]1/2

− Iem exp

[−e (Vp − Vsp)

KBTw

] [

1 +
e (Vp − Vsp)

KBTw

]1/2
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Differentiating both equations for Ip with respect to Vp gives,

dIp
dVp

=
e Ise
KBTe

exp

[

e (Vp − Vsp)

KBTe

]

and

dIp
dVp

=
e Ise
KBTe

1

2

[

1 +
e Vp

KBTe

]−1/2

− e Iem
KBTw

exp

[−e (Vp − Vsp)

KBTw

]

×

×
[

(

1

2
+

e Vp

KBTw

)−1/2

−
(

1 +
eVp

KBTw

)−1/2
]

When these equations are plotted for an ideal cylindrical probe, the plasma potential can be
determined by the sharp peak for Vb ∼ Vsp.

It is difficult to determine the small peak of the slope in the derivation because of the noise.
It is determined by observing the moving peak by varying the emission. Ref. [2] found that
space charge effects can be reduced by decreasing probe radius. With increasing radius the
radial electrical field decreases and the shift becomes greater
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