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Plasma Kinetic Theory

Plasma kinetic theory basis: description of the dynamics of neutral gases, i.e., a

velocity distribution function for the number of particles at any given phase-space
point having a particular set of component velocities:

integro-differential equations appear , as the well-known Boltzmann equation

Applied to plasmas: Kinetic theory gives the fundamental description of a plasma
state, specially for non-equilibrium plasmas.

For quasi-equilibrium plasmas, simplified fluid equations can be derived for time
evolution of measurable macroscopic quantities (density, fluid velocity,
temperature) as suitable averages of the velocity distribution function.

Fundamental parameters: density, Energy (temperature) , pressure (stress tensor) and
heat flux.

e.g. For neutral gases in thermal equilibrium p = nykgT ; Does it hold for plasmas?
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Plasma Kinetic Theory

For a neutral gas in thermal equilibrium at temperature T, the individual molecules
have a great variety of velocity and kinetic energy values from zero to very large
values.

In Statistical Mechanics, a first approach firstly given by J. C. Maxwell, the
distribution fuinction accounts for the number of molecules with speeds in the
range between v and v + Av is given by

N () = Av2e—mv"/CkeT) Ay,

B} > 2 (9] 2 m
Ny - / Acle—mH @D g 4 Ny | £ ( m
0 O :
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Plasma Kinetic Theory (neutral gas vs plasma)
Differences:

v (Zhg T/m) V2

(c)
() (b)

Thermal equilibrium: v =kgT/m is the most probable speed
(a) Maxwellian distribution.

(b) Random (zig-zag) motion of a neutral gas molecule by short range
Instantaneous interaction forces (elastic collisions, zig-zag path , mean free
path, generally denoted by A)

(c) Trajectory (smooth path now !!) of a charged particle in a plasma (binary
Interaction via Coulomb force, realtively large-range interaction force)

Aim: to extend the Kinetic theory of gases, as a basis, to charged particle gas,
although different relaxation times to reach the equilibrium have to be
considered, many concepts usually used for gases are discussed for plasma.
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Plasma Kinetic Theory (neutral gas vs plasma)

But, Plasma Kinetic treatment is possible, however, there are great differences ,
mainly related to the so-called ‘collisions’ (nature of the interaction) between particles.

In neutral gases: length scales of the system usually much larger than A;
the time scales involved are much longer than mean-time between
collisions 1 : quick thermal equilibrium is reached for almost all of
macroscopic variables (density, internal energy ...)

Neutral particles: interact in a spatial (and time) short-range of intense
forces (e.g. Maxwell hard spheres model, typical zig-zag)

Plasmas: the interaction via long range (and weak) Coulomb forces, the
particles do not experience instantaneous “contact” collisions :
smooth random motion emerges in a average field E (figures above)

It is now important to distinguish interaction in/out a Debye Sphere,
microscopic fields simulated by collisional effects dominate in a Debye
Sphere, whereas macroscopic fields (contribution out of Debye Sphere) also
enter as aresponse of the collective effects, intrinsic in any plasma.
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Kinetic description: The distribution function

Its meaning: It is considered the number of particles in a 6-D point space (r, v ) of

volume dr dv as
f(r,v,t)drdv

Any number n(r,t)dr of particlesin 3-D real spatial volume dr is setina
point of velocity space v asitwere “a particle” inthe volume dr at instantt.

Particles can pass the boundary of the volume dr :e.g. particle fluxes due to
collisions. Particles at any point are also “distributed” in velocity.

As done for the the particle density in a point of the configuration space r, a density of
n dr points in velocity space is defined being proportional to volume element dr and
functionof r,tandv as f(r,v,t)dr.

The number of particles in the volume dr with velocities lying between v and v + dv
IS f(r,v,t)drdv. Finally:
f(r, v, t)is the velocity distribution function, it can be understood as a
probability density of points in the 6-D r-v phase space.
A very general formulation is possible knowing the time evolution of f, valid for
Inhomogeneous , anisotropic and non-equilibrium plasmas. E.g.

foeam (¥, V, 1) = foeam (V) = No (v — vp) 5("‘35;) 0(v2) f;jhell (l‘. V. f—) = fgl]_eﬂ (V) = A (’5("{,‘ — "L‘.[])
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The kinetic description of plasmas ...

So that, the key concept is the non-equilibrium velocity distribution for
each plasma species ,which introduces a probabilistic description:
fﬂ(v}r}t) EE:E'}E!H'

The number density of particles with velocities in
dng = fo(v,r,t)dv  the range (v, v+dv) at the instant t

_ The number of particles within the volume dr
dNo = fa(v,r,t) dvdr and velocities in the range (v, v+dv) at the

Instant t .
V4 * dN =1(r, v, 1) drdv The number density: n,(r,t) = fa(v,r,t)dv
ﬂ.-."ﬂ dr’ = dr A falv,r,t) too |
e ¥ y }t — —
I f (V r ) ﬂa(r,t) 1 /_m fa(vsr:t) dv
Represents the probability of finding a particle within the volume
X/ Y dr=dr3 with velocity in the range (v, v+dv) at the instant t

Normalization: See Chen, page 226; Eqgs. 7.2 and 7.3 and Lecture notes Egs. 5.1
and 5.3

Master Universitario en Ingenieria Aeroespacial. E.T.S.l. Aeronauticos. U.P.M.



The physical measurable magnitudes are averages:

Averages: the particle flux, [ dl'y =vdn, = v fo(v,r,t)dv
Kinetic energy by unit b o 2

MaU m&ﬂ
volume , _ ie a dep = dng, = fa(Vv,r,t)dv

The macroscopic particle flux becomes ,(notation _[ means mtegratlon over whole v space)
+ o0
Ly(r,t) =ny(r,t)uy(r,t) = / Vv fo(v,r,t)dv  or equivalently,

oo oo
La(r,t) =ng(r,t) u,(r,t) = ne(r,t) / V fo(v,r,1)dv

This defines the average 1 T 1, 12
u,(r,t) = f
Ne(r, t)

fa(v,r,t)dv

macroscopic fluid velocity:

The average kinetic energy Is related with the local internal energy:

+oc 2
Era(r, 1) =/ m;v fa(v,r,t)dv
— 00
3

for the MB monoatomic gases, e, (r,t) = 5 kT, (r,t) |Local Equilibrium!

Master Universitario en Ingenieria Aeroespacial. E.T.S.l. Aeronauticos. U.P.M.



The time evolution: Boltzmann and Vlasov equations ...

Atomic and molecular collisions control the time evolution of the velocity
distribution function fs (1, v, t) for any plasma species

dfa . % afﬂ: dmi afcx dﬂz’ L %

dt Ot +;(3-"Ji dt)+;(8vi dt ) \ o6t ).

. d 0 0
And using, V. = (EHE + ﬂk) Vv = (8—1+WJ+ aﬂzk)

Oz By 0z
dﬂ a C¥
diz f +v-Vyfat+a- vvfcx—c(fcx) V'vrfﬂzvf'(vf“)
t 8t \

a=F/m, F=F;+q, (E+vAB) J a:Vy fa=Vy-(afa)
With these manipulations we derive the Boltzmann equation for the time
and spatial evolution of fo (1, v, t) becomes,
Of. F

d
o T Ve (V) + Ve (- fo) = Clfa) @Efa:C(fa):;Ccol(fa,fﬁ)

Vlasov equation: df. 8 f.
C(fo) =0 the function fa (1, v, t) is also constant of P ( 2 ) =0
col

motion and remains unchanged by the
time evolution
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E.g. The Boltzmann Equation (a collisional operator)

The different collisions operators describe the time evolution

of fo( 1, v, t) under the microscopic particles collisions.
Simplest collision model : Krook model, a drastic simplification

The Boltzmann operator applies to binary collisions,

CUarfe) = [ [(ots — fu 52) 18| Farn(a,, 0) dS2avs

gl = |va — va| = |v,, — vg| = |g|

Neglecting collisions: Vlasov-Maxwell Equation work with only average fields.

Solvable problem?
Maxwell fields are responsible of collective effects (forces shielded outside Debye sphere)

d F 7,

—f+ V- Vo) f+(— -Vy] =0 ; ‘—f+(v-Vr)f+[(E+v><B)fVV}f=0

ot m Ot )
Bultzmm;ﬁr Equation Vlasov Equation (Boltzm;:m Equation for a Plasma)

? (!
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The Boltzmann collision operator ...

The different collisions operators describe the time evolution of fo( r, v, t) under the
microscopic particles collisions.The Boltzmann operator applies to binary collisions,
whereas alternative formulations as the Fokker-Planck operator are employed when
several particles are simultaneously involved, as in dense plasmas, Coulomb
collisions control particle densities, momentum fluxes and energy relaxation
processes.

More formally, (333;'3) =Cs(fa) = ZC(fm f8)

The time evolution of the o Takes place considering all binary collision
particle distribution processes with all others a # 3 particle

function species present in the plasma.

We will concentrate into a binary collision approximation (interaction
between a single fixed test particle and another field particle of the same or

different species) as, 5 f
( ot )ﬂﬁ Bl

that is, it gives rise to particular collisional process between the a and
B species
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Outline of the time evolution (see text) ...

We assume an isotropic energy distribution function in one dimension evolving from
g( E, t) to g( E, t+0f) during ot and as in the figure, two energy intervals around E and

E

g(E',t +4t) < g(E',

E’'+0E")
In the energy interval ( E, t+f) we have,

( i_f ) I~ g(E’H&Z_ 8ED

the of

Because energy

og
ot

)

contributiogs; B
()= () - ()
/T

ot
Particles with original energies outside (E,
E+dE) coming IN this energy interval, from

other energies accelerated or retarded during
ot

particles
changes in collisions, (dg/dt) has two

r) decreases dn' = g(E',t + 6t) dE’

Within {(E’ E+OE) ¢(E,t+ 6t) > g(E,t) increases dn = g(E,t+6t)dE
( ’I

A
dn

——

J
/

g(E, 1)

E
— N' [<———
E' E'+dE

Particles with original energies within (E, E+dE)
coming OUT from this energy interval towards
others energies accelerated or retarded during
ot
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More formal ...
The rate of change of fqf Ev, t) within the speed dv

interval is, 0fa Iy — Ofa " _(9f=) dv
o’ )y © ot ), 5 ot ),

In the frame where [3 particles are at rest for the stream of incoming a
particles scattered by a SINGLE target particle 3 we have,
fa(r, Vo, t) dv,

T =
Then, §V = (|g|dt) x (bdb) x df Is the volume in shadow in the figure
ahe number of particles inside,dN,, = dn, x 6V -
chr = (fﬂ(r} cht) dvit) X (|g| 6t) X (bdb) X dﬂ db/
A /[~

A

T A

e

By direct collisions, the number of a particles
removed from the velocity interval (Va, Vat+dva) iS
the number of encounters with (3 particles by -

volume during ot , 'l
dng x dN, = dng x dn,, x 6V  and )/ '

hence, \wf”;;

s
(a—i) Ve 0t = fu(T, Va, t) X fa(r,vs,t) x (|g|6t) x (bdbdh) dva dvs
o, 3

g

g ot

/]
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The Boltzmann collision operator ...

Equivalently, by reverse collisions, a number of particles from the velocity
interval (v’q, v 'o+dv ’4) are added to the interval (va, Va+dve) and during the

time ot ,

(%) Vo 0t = folr, V', t) X f5(r, vy, t) x (1] 6t) x (bdbd6) dv’, dv
o, 3

We introduce at this point the here is introduce the collision differential
cross section that characterizes the particular (a, [3) collision process,

bdbdf = 0, 5(g,0) d6 dp = 0, 5(g,6) dS2

dQ .. :
The Boltzmann collision operator is for the

) evolution in time of fa( 1, v, t) under the (a,
! /A\ B) collisions is defined as the difference,

g —t |8 Z\,¢ Ofa

C(far f5) AVa = (E)a,,@ dve

Cfar f5) Ve = (4 5 |81V AV — fo f5 8| dVa dv) 0ap(g,6) A2
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For elastic collisions...

The particular properties of each collisional process simplify the previous
expression. For elastic collisions momentum and energy are conserved

and,

gl =Iva—val=|va—vsl=1g| &0 dv,dvs=dv,dvj

This simplifies the Boltzmann collision operator,

C(far fis) = / / (. £y = fa £5) €] 0 (9, 0) d2dv;

When the distribution functions are known we might exactly calculate
transport coefficients as the rates of collisions with momentum transfer,

etc.

Intuitive physical meaning: observe that the difference of products of f
functions means a double proportionality accounting for the collisions due to
the number of encounters between particles , both numbers are weighted
by an effective cross-section and by the value of the relative velocity, g and g
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Applications beyond the Physics...
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(57) ABSTRACT

A system for correctly evaluating price distribution and risk
distribution for a _financial product or its derivatives intro-
duces a probability density function generated with a Boltz-
mann model at a higher accuracy than the Gaussian distribu-
tion for a probability density. The system has an initial value
setup unit and an evaluation condition setup unit. Initial val-
ues include at least one of price, price change rate, and price
change direction of a financial product. The evaluation con-
ditions include at least time steps and a number of trials. A
Boltzmann model analysis unit receives the initial values and
the evaluation conditions, and repeats simulations of price
fluctuation, based on the Boltzmann model using a Monte
Carlo method. A velocity/direction distribution setup unit
supplies probability distributions of the price. price change
rate. and price change direction for the financial product to the
Boltzmann model analysis unit. A random number generator
for a Monte Carlo method is employed in the analysis by the
Boltzmann model, and an output unit displays the analysis
result. A dealing system applies the financial Boltzmann
model to option pricing, and reproduces the characteristics of
Leptokurcity and Fat-tail by a linear Boltzmann equation to
define risk-neutral and unique probability measures. Conse-
quently, option prices can be evaluated in a risk-neutral and
unique manner. taking into account Leptokurcity and Fat-tail
of a price change distribution.

The kinetic theory is an
statistical approach that
goes beyond the
Physics. It also applies
to financial analysis, etc.
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Portrait of Ludwig Boltzmann and his grave in Zentralfriedhof,
Vienna




