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Chapter 2

Elements of plasma kinetic theory

In this chapter we introduce the advanced kinetic description of non-equilibrium
plasmas that generalizes the statistical concepts for neutral gases in equilibrium
introduced in chapter 3 of volume 1. The Boltzmann equation governs the time
evolution of the probability distribution function of electrons, ions and neutral atoms.
The evolution introduced by collisions at the microscopic level is discussed on the basis
of the simple BGK relaxation model and the Boltzmann collision integral.

The plasma kinetic theory considers the plasma as an ensemble of interacting
electrically charged particles and neutral atoms or molecules. However, we will
consider in the following only one kind of particle to focus on basic concepts that
will be later extended to all plasma species.

The dynamical state of a particle is determined in classical mechanics by its
position r and velocity v (or momentum p) at any given time. Then, we can
represent a system of N particles by a collection of pairs vr( , )i i corresponding to the

= …i N1, 2, particles, equivalent to N points distributed into a six-dimensional
phase space v v v v=r r r r( , ) ( , , , , , )x y z x y z . The velocity v and position r are inde-
pendent variables that are respectively called velocity space and geometry space.

For a large number of particles it is statistically meaningful to consider the
number of particles (points) dN contained within a small volume element

v =d r d dx dy dz dv dv dvx y z
3 3 in six dimensions of the phase space located at point

( vr, ). Equivalently, dN is also the number of particles within the volume located
between r and +r rd in the geometry space with velocities between v and v v+ d .
We can also write vv = rd d r d d3 3 to simplify the mathematical notation and,
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v v vv= =r r rdN f t d d r f t d d( , , ) ( , , ) (2.1)3 3

where v rf t( , , ) is the velocity distribution function1. Within an elementary volume
(d r3 ) of the geometrical space, the number density of particles dn is,

v vv δ= = = =r rdn
dN
dr

f t d N
dN

dr dv
f t( , , ) also, ( , , )

3
3

3 3

Then rn t( , ) is the particle density function, whereas δN represents the number of
points contained within the volume vd r d3 3 of the phase space. Therefore the
function,

v v
δ= = × =r rP t
N
N N

dN
dr dv N

f t( , , )
1 1

( , , ) (2.2)
3 3

gives the probability v rP t( , , ) of finding one particle with velocity in the range
(v v v+ d, ) and position between (r, +r rd ) in the geometry space. This probability
distribution function evolves in time, and is normalized to the unity,

v v

v v

∫ ∫
∫ ∫

=

=
−∞

+∞

−∞

+∞

−∞

+∞

−∞

+∞

r r

r r

P t d d

f t d d N

( , , ) 1 and equivalently,

( , , )
(2.3)

where N is the total number of particles in the system. The integrals are extended to
all velocities and positions possible to cover the entire vr( , ) phase space.

The macroscopic energy of the system is finite, so the sum of the kinetic energies
of all particles must be bounded. To achieve this, the probability of finding a rapidly
moving particle must decrease as its speed vv = ∣ ∣ increases at all points r of the
geometry space. Otherwise, the macroscopic energy of the system would grow
without limit. Mathematically, this means that the function v rf t( , , ) tends to zero
when the speed v∣ ∣ becomes infinitely large at all positions of r of the geometry space.

The stationary v rf ( , ) velocity distribution function has ∂ ∂ =f t/ 0. When it is
independent of r as vf t( , ) it is said to be homogeneous, and inhomogeneous if it
is not uniform in the geometry space. The distribution is isotropic when v∣ ∣ rf t( , , ) is
independent of the direction of the velocity v and it is called anisotropic otherwise.

The equilibrium Maxwell–Boltzmann distribution, equation (3.5) of volume 1, is
a stationary, homogeneous and isotropic probability distribution function. Its
properties reflect the physical characteristics of the thermodynamic equilibrium
state at microscopic level; the molecules are equally distributed in space and their
motions have no preferred direction since all are equally likely.

As in section 3.3 in volume 1, we can introduce the macroscopic physical
magnitudes as averages of the distribution function v rf t( , , ) over the phase space
( vr, ). Since v vδ = r rN f t d d( , , ) gives the number of points inside the elementary

1 It will be called also distribution function in the following for short.
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volume ( vd r d3 3 ) and rn t( , ) is the number density of particles within d r3 , integration
gives

v v∫ ∫= =
−∞

+∞

−∞

+∞
r r r rn t f t d N n t d( , ) ( , , ) and also, ( , ) (2.4)

We can also introduce the average or macroscopic flow velocity,

v v v

v v
v v v

∫
∫ ∫= =

α

−∞

+∞

−∞

+∞ −∞

+∞
u r

r

r r
rt

f t d

f t d n t
f t d( , )

( , , )

( , , )

1
( , )

( , , ) (2.5)

which gives the velocity field u r t( , ) and the flux of particles as,

v v v∫Γ =
−∞

+∞
r rt f t d( , ) ( , , ) (2.6)

These averages generalize concepts previously introduced in volume 1 section 3.2
for the Maxwellian distribution equations (3.5) or (3.7) of a neutral gas.

The determination of the distribution function is a central problem of kinetic
theory since macroscopic physical properties are calculated as statistical averages.
The evolution of v rf t( , , ) is governed by the Boltzmann or kinetic equation which
gives the temporal and spatial evolution of the distribution function. However, the
probability distribution function can be used instead and v v= r rdP P t d d( , , ) gives
the probability of finding one particle within the elementary volume ( vd r d3 3 ) of the
phase space.

2.1 The Boltzmann equation
We are now in a position to generalize the concepts introduced in the previous
section for a system composed of several different kinds of particles. In the kinetic
description the αN plasma particles, where α = e i a, , labels electrons, ions and
neutral atoms, these are considered as points with mass αm and electric charge αq
(with =q 0a ) distributed into the phase space vr( , ). Each plasma species has its own
velocity distribution function vα rf t( , , ) that—as we shall see—is coupled by the
elementary processes (collisions) between them at the microscopic level.

We will introduce here the Boltzmann equation by means of a somewhat simple
and intuitive approach, starting from the definition (2.2) of the probability
distribution function. The rigorous formulation in connection to the positions and
velocities of point-like charged plasma particles and the derivation of the Boltzmann
(or kinetic) equation is outlined2 in appendix B.

2A more rigorous derivation of plasma kinetic equations (B.15) or (B.16) is in appendix B connecting the
point-like distribution of particles in phase space with the probability distribution (2.2). The function

vα rf t( , , ) results from the average over an intermediate length scale Lc much longer than the interparticle
distance λ= ≪ ≲−d n Lo o c D

1/3 but below the Debye length and velocities v λ= ≲ ×α αL T f/c c D p, where
=α αf T1/p, is the plasma frequency which introduces the faster time of response of the plasma.
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The distribution function vα rf t( , , ) depends on seven independent variables3 and
using equation (A.3) its total time derivative is,

v
∑ ∑= ∂

∂ + ∂
∂ + ∂

∂
α α α αDf

Dt
f
t

f
x

dx
dt

f dv
dti i

i

i i

i⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

that may be cast (equation A.4) as,

v v= ∂
∂ + · ∇ + · ∇α α

α αa
Df
Dt

f
t

f fr

In this equation,

v v vv∇ ≡ ∂
∂ + ∂

∂ + ∂
∂ ∇ ≡ ∂

∂ + ∂
∂ + ∂

∂i j k i j k
x y z

and,
x y z

r

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

respectively, are the nabla operators, ∇r in the geometry space and v∇ in the velocity
space where (i j k, , ) are constant unit vectors. In order to derive the Boltzmann
equation for the distribution vα rf t( , , ) we recast the previous expression introduc-
ing the acceleration a or force by unit of mass as,

v= = + + ×
α

α
α

α
αa

F
f E B

m
q
m

( )g

Here αfg represents other non-electromagnetic forces acting on the α particles4 with
electric charge αq . The local electromagnetic fields E r t( , ) and B r t( , ) are spatially
averaged5 over distances λ≲L D to preserve the plasma collective effects. We can
write the time evolution equation,

v v v= ∂
∂ + · ∇ + + + × · ∇α α

α α
α

α
αf E B

Df
Dt

f
t

f
q
m

f( ) (2.7)gr

⎡
⎣⎢

⎤
⎦⎥

When the non-equilibrium velocity distribution function vα rf t( , , ) eventually
remains unaltered in time we have =αDf Dt/ 0. In this case equation (2.7) is
denominated the Vlasov equation or collisionless Boltzmann equation and the
velocity distribution function is also a constant of motion in the dynamical evolution
of the system.

However, the plasma particles exchange energy and momentum in collisional
processes which produce changes in the velocity distribution function of ions,
electrons and neutral atoms. Collisions alter number of particles (points) initially
located in the phase space volume ( vd r d3 3 ) centered at vr( , ) because their velocities
and/or positions can change. Then, particles move to other points of the phase space

3The derivation of this scalar function αDP Dt/ and the connection between Lagrangian and Eulerian velocities
are discussed in appendix A.
4 The Boltzmann equation also applies to neutral gas particles setting the electric charge =q 0a , as they are not
affected for the electromagnetic fields but are coupled by collisions with the electron and ion distribution
functions.
5 In appendix B it is discussed that these electromagnetic fields acting over the individual charge αq result from
a spatial average over typical lengths λ≲L D of effective electric charge shielding.
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after colliding because their initial velocities and positions are altered on a time scale
governed by collisions. In the general case, molecular encounters alter the velocity
distribution function ≠αDf Dt/ 0 and we can write,

δ
δ= =α

α α
αDf

Dt
C f C f

f
t

( ) where, ( )
col

⎛
⎝⎜

⎞
⎠⎟

represents the change in the velocity distribution αf originated by collisional
processes with the other plasma species. The rate of change also involves their
distributions and,

∑=
β

α α β α βC f C f f( ) ( , ) (2.8),

where α β α βC f f( , ), represents the change in αf by collisions of α particles with all other
β species. At this point we do not have an explicit expression available for αC f( )
coupling the probability distribution of two plasma species, that will depend on the
collisional cross sections, particle densities, etc, so that we will leave this point for
later.

Finally, the Boltzmann equation for the α-particle distribution function is,

v v v
∂
∂ + · ∇ + + + × · ∇ =α

α α
α

α
α αf E B

f
t

f
q
m

f C f( ) ( ) (2.9)gr

⎡
⎣⎢

⎤
⎦⎥

where the collision term αC f( ) is still undefined and accounts for the dynamical
evolution introduced by the encounters at the atomic and molecular level, averaged
over an effective electric field shielding length6 λD.

Equation (2.9) can be seen as a continuity equation for the velocity distribution
function in the phase space vr( , ). First, we use v v· ∇ = ∇ ·α αf f( )r r and also

vv v v· ∇ = + + × · ∇ = ∇ ·α α
α

α
α αa f E B af

q
m

f f( ) ( )g

⎡
⎣⎢

⎤
⎦⎥

The electromagnetic fields E r t( , ) and B r t( , ) as well as v∇ · =αf 0g are inde-
pendent of v, so we can also make use of,

Therefore, the Boltzmann equation (2.9) is equivalent to,

v v
∂
∂ + ∇ · + ∇ · =α

α α αa
f
t

f f C f( ) ( ) ( ) (2.10)r

where αC f( ) is the sum (2.8) of all changes experienced by the distribution function
for the α species by collisions. Equation (2.10) has the implicit assumption that the

6 Strictly speaking, the Debye length introduced in section 4.5 of volume 1 is only valid for Maxwellian
electrons and ions. This is not the general case, so λD can be considered here as an effective electric shielding
scale length.
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temporal scales of all collisional processes considered in αC f( ) are much faster than
the time evolution of the distribution function.

Finally, introducing a generalized coordinate v=R r( , ) in the phase space and its
time derivative,

v v
v= = = =V a

r
a

d
dt

d
dt

( , ) ,
⎛
⎝⎜

⎞
⎠⎟

Expression (2.10) can be cast into a generalized continuity equation for the
distribution αf in the phase space as,

∂
∂ + ∇ · =α

α αV
f
t

f C f( ) ( ) (2.11)R

Then, αC f( ) can be considered as a the source/sink term and the vector = αq Vf is
the flux of v=α αR rf t f t( , ) ( , , ). The collision operator δ δ=α αC f f t( ) ( / )col accounts
for points (particles) added and/or removed from the volume ( vd r d3 3 ) of the phase
space.

The plasma elementary processes introduced in chapters 5 and 6 of volume 1 are
responsible for the term αC f( )s in the Boltzmann equation (2.9) or (2.9) which
introduces the collisional changes in the probability density during the evolution of
the system. In collisionless plasmas =αC f( ) 0 and the probability density vα rf t( , , )
is a conserved quantity in the dynamic evolution of the system.

The Boltzmann equations (2.9) or (2.9) needs to be complemented with the
Maxwell equations for the electromagnetic fields E r t( , ) and B r t( , ) in the plasma.
These fields result from the coupling of plasma charged particles and the externally
applied or self-generated fields. The velocity distribution function vα rf t( , , ) can be
used to calculate the average plasma density of charged particles ρc and the
transported current density Jc as,

v v∫∑ ∑ ∑ρ ρ= = =
α α α

α α α α α−∞

+∞
r rq n t q f t d( , ) ( , , ) (2.12)c c

and,

v v v∫∑ ∑= =
α α

α α α−∞

+∞
J J rq f t d( , , ) (2.13)c e

that should be introduced in the Maxwell equations to self-consistently calculate the
electromagnetic fields E r t( , ) and B r t( , ).

From a formal point of view, and lacking an explicit formulation for the
collisional term αC f( )s , the kinetic approach to plasma physics may be understood
as the closure of the Maxwell equations for E r t( , ) and B r t( , ) using Boltzmann
equation (2.10).

When the distribution functions vα rf t( , , ) can be obtained, the physical macro-
scopic magnitudes, such as the local particle density α rn t( , ) in equation (2.4) or the
velocity field αu r t( , ) in equation (2.5) for ions, electrons and neutral atoms can be
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calculated. This approach was previously used in volume 1 sections 3.3 and 3.4 using
the equilibrium Maxwell–Boltzmann distributions of equations (3.5) or (3.7).

However, to obtain explicit solutions of the Boltzmann equation is difficult. The
generalization of this kinetic scheme to non-equilibrium plasmas is by far much
more complex than for a neutral gas in equilibrium. Strictly speaking, we need to
model the collision term αC f( )s accounting for the specific characteristics of colli-
sional processes discussed in chapter 6 of volume 1.

The limited relaxation model introduced in the next section is a simple approach
to introduce the effect of short-range collisions and next we will discuss the more
involved Boltzmann collision integral valid for short-range binary collisions in low
pressure gases and weakly ionized plasmas. The long-range Coulomb collisions
involve the simultaneous interaction of many charged particles and are described by
the more involved Fokker–Planck or Landau collision operators.

2.2 Relaxation model for molecular collisions
The formulation of specific models for the collision term αC f( )s we left aside in the
previous section is a difficult task since the mathematical description of specific
elementary processes are involved. This term in equations (2.9) or (2.10) accounts for
the changes in time produced by molecular encounters in the velocity distribution
function vα rf t( , , ). We will discuss the simple formulation of the relaxation or
Krook model7 which comes from the neutral gas particle collision term.

In the first place, the existence of a local and stationary distribution vα rf ( , )eq

close to the local Maxwellian distribution (4.3) introduced in section 4.2 of volume 1
is assumed. The initial (t = 0) non-equilibrium distribution vα rf ( , , 0)o, evolves in
time to αf eq at a rate,

τ
∂
∂ = − − <α α αf
t

f f( )
0

eq

r

where vα rf t( , , ) is the distribution function for >t 0 and τr is a characteristic
relaxation time. We obtain a differential equation for αf as,

τ τ
∂
∂ + =α α αf
t

f f

r

eq

r

and the right term ταf /eq
r is time-independent. Its complete solution is,

v v= +α α
τ−r rf t f C e( , , ) ( , )eq t / r

and = −α αC f f( )o
eq

, can be determined using the non-equilibrium distribution
vα rf ( , , 0)o, for the initial instant giving,

v v= + −α α α α
τ−r rf t f f f e( , , ) ( , ) ( )eq

o
eq t

,
/ r

7 Proposed by Bathnagar, Groos and Krook in reference [1], it is also called the BGK model.
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The departure −α αf f( )o
eq

, from the equilibrium distribution function decreases in
time at a rate governed by the relaxation time τr and is also spatially homogeneous
since it is independent of r. Equivalently, the time-dependent amplitude −α αf f( )o

eq
,

of fluctuations from the equilibrium distribution function vα rf ( , )eq exponentially
decays in time for small departures of the equilibrium state.

This simple relaxation model is practical and τc can be directly related with the
dominant collision cross sections. In weakly ionized plasmas governed by short-
range collisions of charged particles with neutral atoms we can introduce the
relaxation times τ ν∼ 1/ea ea and τ ν∼ 1/ia ia for electron and ions. The rate of change of
the ion and electron velocity distribution functions depend on the collision
frequencies,

v vν σ ν σ∼ ¯ ∼ ¯n n n nand also,ea a e ea i ia a i ia i

introduced in section 3.4 of volume 1 that can be directly incorporated into this
BGK model. Additionally, high neutral atom densities (proportional to the gas
pressure pa) reduce the relaxation times τr that govern the amplitude of fluctuations
from the equilibrium plasma state. The short relaxation times facilitate a fast
collisional energy thermalization among plasma species, as discussed in section 4.3 of
volume 1.

As we shall see in chapter 3, this simple BGKmodel, can be employed to formulate
the macroscopic momentum and energy exchange (close equilibrium state) between
the electron and ion fluids in the hydrodynamic description of weakly ionized plasmas.
However, except for systems where a specific collisional process dominates, this model
is rather limited. Using a single time rate τr (equivalently, one collision cross section)
the BGK model is a crude approximation that oversimplifies the relaxation phenom-
ena of actual systems where multiple elementary processes can take place at the
microscopic level, governed by different collision cross sections, etc.

2.3 The Boltzmann collision integral
The Boltzmann collision integral is a more refined approximation for the collision
term αC f( )s in equation (2.10) than the BGK relaxation model but—as we shall see—
it is still limited, since it is also based on simplifying assumptions. The Boltzmann
collision integral model is applicable to sort-range binary collisions in dilute gases
and plasmas where molecular or atomic forces decay much faster than the inter-
particle distance. This situation takes place in weakly ionized plasmas and gases at
low pressures. The spatial changes of velocity distributions vα rf t( , , ) are smooth
and its temporal variations slow compared with characteristic collision time. That is,
the model applies when the temporal scales of collisional processes faster than the
evolution in time of the system. After its derivation we will examine with more detail
the underlying physical approximations.

2.3.1 Qualitative derivation

In the following, we will consider a fixed phase space volume vv =α αrd r d d d3 3

located at point ( vαr, ) and the geometry volume =rd d r3 at point r will remain fixed
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and is occupied by target α-particles. Collisions with the incoming β-particles change
the number of targets within the elementary volume v v=α αd d 3 placed about vα in
the velocity space.

The change in number of α-particles within the elementary phase space volume
( vαd r d3 3 ) during the time interval δt can be expressed (see equation 2.1) as,

vδ δ δ δ
δ δ= − =α α α

α

αβ
αN N N

f
t

d r d t( )in out 3 3
⎛
⎝⎜

⎞
⎠⎟

Here δ αN is the difference between the δ αN in number of α-particles that come into
the velocity volume interval vαd 3 located at point vα after experiencing one collision
event. The number δ αN out are those initially within vαd 3 that are pulled out when
colliding. Additionally, δ δαf t( / )col represents one specific binary8 (two-particle)
collision term αβ α βC f f( , ) in the sum αC of equation (2.10).

The term δ αN out accounts for direct collisions that pull out the α-particle initially
located within ( vαd r d3 3 ) from the velocity range (v v v+α α αd, ) or equivalently, from
the volume vαd 3 located at point vα. The inverse collisions contribute to δ αN in since
they bring inside the volume vαd 3 placed at vα the α-particles within d r3 others
located outside, with initial velocities between v′α and v v′ ′+α αd before the encounter.

The number of incoming β-particles scattered by one α-target by direct collisions
using equation (5.4) of volume 1 is,

δ δ σ χ δ̇ × = Ω × Γ ×βQ t g d t[ ( , ) ]dir dir

where v vΓ =β β β βrg f t d( , , ) 3 is the flux (2.6) of β-particles, v v= −β αg is the relative
velocity, the collision cross section is σ χg( , )dir and Ωd the solid angle of figure 5.2 in
volume 1. If we multiply by the number of α-particle targets within the d r3 geometry
space volume,

v vv vσ χ δ× Ω × × ×α α α β β βr rf t d d r g d g f t d t( , , ) [ ( , ) ] ( , , )3 3
dir

3⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
we obtain the total number of encounters. Integrating for all possible velocities vβ
and scattering angles Ωd we derive the contribution of direct collisions,

v v∫ ∫δ δ σ χ= × Ωα α β α β
−∞

+∞

Ω
N t d r g g d f f d d( ) ( , ) (2.14)out 3

dir
3 3

where we have introduced the notation v=α α α rf f t( , , ) and v=β β β rf f t( , , ) for
short.

A similar argumentation is used for the inverse collisions where again the β-
particles scattered by one α-target is,

δ δ σ χ δ̇ × = ′ ′ Ω′ × Γ′ ×βQ t g d t[ ( , ) ]inv inv

8 This specific approximation is crucial as collisions involving three or more particles are beyond this approach,
valid only for low pressure (or dilute) gases.
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where v v′ ′ ′Γ = ′β β β βrg f t d( , , ) 3 is the flux of incoming particles and v v′ ′′ = −β αg
their relative velocity. Multiplying by the α-targets inside d r3 we have,

v vv vσ χ δ′ ′ × ′ ′ Ω′ × ′ × ′ ′ ×α α α β β βr rf t d d r g d g f t d t( , , ) [ ( , ) ] ( , , )3 3
inv

3⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
Integrating over all velocities v′β and scattering angles Ω′d we obtain the

contribution of direct collisions,

v v∫ ∫δ δ σ χ= × ′ ′ ′ ′ ′ Ω′ ′ ′α α β α β
−∞

+∞

Ω′
N t d r g g f f d d d( ) ( , ) (2.15)in 3

inv
3 3

where again v′ ′ ′=α α α rf f t( , , ) and v′ ′=β β β rf f t( , , ). Finally, using equations (2.14)
and (2.15) the collisional term can be calculated as,

v
δ δ

δ= −
αβ α β

α α

α
C f f

N N
d d r t

( , ) (2.16)
in out

3 3

that can be understood as a balance equation accounting for the number of
incoming and outgoing particles from the elementary volume element of the phase
space ( vαd r d3 3 ) caused by collisions. It is important to note that a specific model for
the cross sections σ χg( , )dir and σ χg( , )dir is still required in equations (2.14) and
(2.15). That is, the specific physical details of inter-particle interactions at the atomic
and molecular level.

The above expression for αβ α βC f f( , ) takes a simple expression for short range
elastic collisions where = ′g g since the vectors g and ′g only differ in direction (see
section 5.3 of volume 1) in this case. Additionally, σ χ σ χΩ = ′ ′ Ω′g d g d( , ) ( , )dir inv
because the cross section is equal for forward and reverse collisions and assuming
interparticle forces to have central symmetry is also invariant to an inversion of the
coordinates9. Furthermore, using the center of mass rCM we have,

v v v v= = ′ ′ = ′ ′α β α βg r g rd d d d d d d dcm cm

With these simplifications we finally have,

v∫ ∫δ
δ σ χ= ′ ′ − Ωα

αβ α β α β β
−∞

+∞

Ω

f
t

g g f f f f d d( , ) ( ) (2.17)
col

⎛
⎝⎜

⎞
⎠⎟

It is important to note that Boltzmann collision integral couples the velocity
distribution functions of two particle species through the collisional cross section of
a specific elementary process. Then equation (2.10) is transformed into an integro-
differential equation when collisions are taken into account as,

9 The direct collision can be viewed replacing in figure 5.2 of volume 1 the target b by α and the incoming
particle α is β. In the reverse encounter the incoming particle moves along the opposite direction that a point
follows in the figure and symmetry gives equal solid angles for both processes.
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v

v

v ∫ ∫ σ χ∂
∂ + ∇ · + ∇ · =

× ′ ′ − Ω

α
α α α αβ

α β α β β

−∞

+∞

Ω

( )
a

f
t

f f g g

f f f f d d

( ) ( ) ( , )
(2.18)

r

Each plasma species α = e i a, , is governed by a Boltzmann equation (2.10) with its
specific collision integral (2.17) for each elementary process. The sum of all
contributions gives,

∑=
β α≠

α α β α βC f C f f( ) ( , ),

and therefore the velocity distribution functions of plasma species are coupled
through collision integrals, that include the cross sections of collisional processes.

2.3.2 Approximations

The previous derivation of the Boltzmann equation (2.18) relies on the following
relevant physical assumptions and/or approximations:

1. Only short-range binary collisions are taken into account and collective
effects are ignored. This assumption is justified for low pressure gases or
partially ionized low pressure plasmas where the collisions with neutral
particles are dominant. This is not the case when the contribution of long-
range Coulomb collisions are important.

2. The colliding particles are considered an isolated system in the above
derivation. The effect of external forces on cross sections or in the two-
particle collision parameters are neglected. The relative speed = ′g g is
constant only in the absence of external forces and takes a cumbersome
expression otherwise.

3. Within the phase space volume ( vαd r d3 3 ) the velocity distribution functions
are uniform and constant in time. The collision time interval δt is much
shorter than the variation in time of the velocity distribution functions of
particles and d r3 much smaller than the spatial variations of the distribution
functions. In other words, the temporal scale of elementary processes are
faster than the time evolution of the system.

4. The velocities and positions of particles before the encounter are independent
(uncorrelated). The probability that an α-particle collides with the β-particle
can be considered to be proportional to the product ×α βf f and correlations
are neglected. This assumption is known as the molecular chaos hypothesis.

2.3.3 The Maxwell–Boltzmann distribution

The Boltzmann equation is valid for low pressure gases and plasmas where long-
range Coulomb collisions can be neglected. This is usually the case of plasmas in
space and technological applications where ionization degree is low and gas
pressures are moderate. In these conditions the equilibrium Maxwell–Boltzmann
velocity distribution (3.5) or (3.7) is recovered from the collision integral (2.17).
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In the limit of thermodynamic equilibrium the velocity distribution function vα rf ( , )
is stationary and a sufficient condition is to satisfy δ δ =αf t( / ) 0col and then,

v
v

∫ ∫ σ χ ′ ′ − Ω = ′ ′ − =αβ α β α β β α β α βΩβ
g g f f f f d d f f f f( , ) ( ) 0 then, 0 (2.19)

This functional equation has a unique solution that can be justified as follows. In the
equilibrium state the distributions v v∣ ∣ =α α α αf f( ) ( )2 are uniform in space (independ-
ent of r) and isotropic v v∣ ∣ =α α α αf f( ) ( )2 so we can write,

v v v v+ = ′ + ′α α β β α α β βf f f fln ( ) ln ( ) ln ( ) ln ( ) (2.20)2 2 2 2

The unique solution possible to satisfy equations (2.19) and (2.20) and the
conservation of energy in the collisions is,

v v=α α αf A B( ) exp( )2 2

and the Maxwell–Boltzmann distribution (3.5) can be derived as in section 3.2 of
volume 1 using the normalization condition for the A constant.

2.4 Commentaries and further reading
The books [2, 3] and [4] discuss in more detail the fundamentals of the plasma kinetic
theory introduced in this chapter. The book [5] is an advanced text as is also the
classical and comprehensive book [6]. Here we are mainly interested in partially
ionized plasmas at low pressure where short-range collisions are dominant. The
Boltzmann integral is in this case a valid physical description, and in chapter 21,
sections 4.2 and 4.3 of reference [2] is introduced its application to ion and electron
transport weakly ionized gases. This specific model is of interest in the physical
description of low pressure electric discharges.

The Boltzmann equation and collision integral have played an important role
connecting the deterministic laws of classical mechanics with the irreversible nature
of non-equilibrium physical processes. The literature on the Boltzmann equation is
huge and its mathematical properties are still a subject of research [7]. This chapter is
only a brief overview to a challenging field with implications far beyond physics.
Boltzmann’s ideas have found applications in fields as diverse as econometric models
[8], stock market trade [9], economic wealth [10] or social sciences [11].

The long-range Coulomb collisions require more involved models such as the
Fokker–Planck and Landau collision operators. So far we are concerned with
weakly ionized plasmas so they are outside the scope of the present work. These
collision operators are discussed in chapter 21, sections 5.2 and 5.3 of the book [2]
and also in chapter 3 of [12].
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